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Preface

Numerical simulations have been wildly used in engineering design and optimiza-
tion to study or imitate the real physical systems. With the increasing computational
power and the development of simulation software, simulation models can reflect
more details of the real system and the discrepancy between the physical system and
the simulation model is shrinking. However, conducting a high-fidelity simulation is
still time-consuming due to the increasing complexity of the simulation model, for
example, the utilization of more solving equations and finer mesh, etc. If directly
applying these time-consuming simulation models in optimization problems may
also result in unaffordable design cost. Under this background, surrogate models
have gained increasing attention in recent years. They are constructed based on
available input parameter values and the corresponding output performance or
quantity of interests (QOIs) to provide predictions. Especially the multi-fidelity
surrogate models, which integrate the information from the simulation model of
different fidelity, can achieve a high modeling accuracy within the same simulation
cost. Applying surrogate models to engineering design and optimization can sig-
nificantly reduce the required number of simulations and shorten the design cycle.

For this book, our motivation is to provide a systematic introduction for the
designers about how to use surrogate models in engineering design and optimiza-
tion. It mainly consists of two parts: how to construct a surrogate model with the
desired accuracy and how to apply it to different optimization problems. Therefore,
this book will cover some of the most popular methods in design space sampling,
the ensemble of the surrogate model, multi-fidelity surrogate model construction,
surrogate model selection, and validation, surrogate-based robust design opti-
mization, and surrogate model-based evolutionary optimization. Some real-life
engineering design problems, such as three-dimensional aircraft design, are also
provided to illustrate the ability of Surrogate models in support of complex engi-
neering design. Also, lots of illustrative examples are adopted throughout the book
in the hope that the approaches are explained more clearly in this way. We believe
that the methods for the ensemble of the surrogate model and multi-fidelity model
will be particular interest to the readers, as the presented methods demonstrate a
good balance between surrogate modeling accuracy and building cost. This book
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introduces different approaches in a didactic way, and it can be used as a reference
book for undergraduate students, graduate students, or engineers. We assume the
intended readers have some mathematical backgrounds, for example, matrix
operations, basic optimization algorithms and so on.

We thank Prof. Qi Zhou for his laborious work, Prof. Xinyu Shao for his
valuable comments, and the following graduate students: Jiexiang Hu, Leshi Shu,
Tingli Xie, Hua Wei, Xiongfeng Ruan, Ji Cheng, Yutong Peng, Linjun Zhong, and
Yuda Wu. Ping Jiang, the first author, acknowledges financial support from the
National Natural Science Foundation of China (NSFC) under Grant No. 51775203.
Qi Zhou, the second author, is grateful for the financial support from the National
Natural Science Foundation of China (NSFC) under Grant No. 51805179. Xinyu
Shao, the third author, is grateful for the financial support from the National Natural
Science Foundation of China (NSFC) under Grant No. 51721092.

Wuhan, China Ping Jiang
August 2019
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Chapter 1
Introduction

1.1 Reasons for Using Surrogate Models

Simulation models have been widely used to study and analyse complex real-world
systems in the design of many modern products, such as vehicles, civil structures
and medical devices (Zhou et al. 2016a, 2017). Various types of engineering tasks
utilize simulation models, including design space exploration, design optimization,
performance prediction, operational management, sensitivity analysis and uncer-
tainty analysis. There are also various problems, such as model calibration and
model parameter sensitivity analysis, related to enhancing the ability of simulation
models to faithfully reproduce real-world systems (Razavi et al. 2012).

Simulation models can help to predict the performance of systems to facilitate
exploration of the design space and search for an optimal design. These simulation
models, often implemented with computer codes (e.g. computational fluid dynamics
and finite element analysis), can be computationally expensive (Zheng et al. 2013).
While the capacity of computers continues to increase, to capture real-world sys-
tems more accurately, current simulation codes are becoming even much more
complex and unavoidably more expensive (Zheng et al. 2013). It is still impractical
to rely only on high-fidelity simulations to yield the full-scale relationships between
the design variables as the inputs and the system performance as the output
(Christelis and Mantoglou 2016; Zhou et al. 2016b). For example, it can take days
to simulate the collapse behaviour of a complete ship structure using finite element
analysis or, for the mechanical behaviour of polycrystalline alloy specimens for
strength testing using full atomic molecular dynamics simulations, to produce one
single output of performance prediction on a computer cluster. Design optimization
requires such simulations to be iteratively run and performance predictions to be
made for various combinations of input values. Taking Ford Motor Company as an
example, it has been reported that it takes the company approximately 36–160 h to
run one crash simulation for a full passenger car. For a two-variable optimization
problem, under the assumptions that 50 iterations on average are needed for

© Springer Nature Singapore Pte Ltd. 2020
P. Jiang et al., Surrogate Model-Based Engineering Design and Optimization,
Springer Tracts in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-0731-1_1
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optimization and that each iteration requires one crash simulation, the total com-
putation time would be 75 days to 11 months (Crombecq et al. 2011). Therefore,
relying on full-scale high-fidelity simulations to search for optimal designs is
computationally prohibitive.

An effective way to reduce the search time is to utilize surrogate models, also
known as approximation models or surrogate models. Such a model acts as a model
of a model and thus can replace an expensive simulation model by approximating
its input–output responses (Kleijnen 1987; Viana et al. 2014; Tyan et al. 2015).
There are many commonly used surrogate modelling techniques (Van Gelder et al.
2014), such as polynomial response surface (PRS) models (Kleijnen 2008), kriging
models (Kleijnen 2009; Xiao et al. 2012), neural network models (Can and Heavey
2012) and radial basis function (RBF) models (Fang and Horstemeyer 2006).
Details of these types of surrogate models are introduced in Chap. 2.

It is important to note that the quality of the surrogate model has a profound
impact on the computational cost and convergence characteristics of surrogate
model-based design optimization (Zhou et al. 2016b). The accuracy of surrogate
models may vary for different problems. For example, Simpson et al. (2001) found
kriging models to be the most accurate for slightly nonlinear responses in high
dimensions, whereas Fang et al. (2005) found that RBF models show the best
quality for highly nonlinear responses. To avoid a poor-quality surrogate model, the
common practice is to construct multiple surrogate models based on input and
output data from simulations, evaluate the accuracy of these surrogate models, and
then select the single surrogate model with the best quality (Acar and Rais-Rohani
2009). However, this method does not take full advantage of the construction of the
different surrogate models, and evaluating the accuracy of multiple surrogate
models may consume additional resources. An alternative method to overcome
these drawbacks and improve the prediction accuracy of surrogate modelling is to
form an ensemble by combining the individual surrogate models. Such an ensemble
of surrogate models can take advantage of each individual surrogate model,
effectively reducing the error caused by the instability of a single surrogate model.
The most common ensemble of surrogate models is a linear combination of indi-
vidual surrogate models. The key step in constructing an ensemble of surrogate
models is the selection of the weight coefficients. Usually, surrogates with higher
prediction accuracies have larger weight coefficients, while surrogates with poorer
prediction accuracies have smaller weight coefficients. Various methods for
selecting the weight coefficients have been studied. For example, Bishop (1995)
proposed an optimal weighted ensemble of surrogates in which a matrix method is
used to calculate the weight coefficients. Such as weight coefficient selection based
on error minimization (Acar and Rais-Rohani 2009). Zerpa (2005) set the predicted
variance for local error estimation as the weight coefficient for each surrogate
model. Zhou et al. (2011) obtained the optimal average weight by using a recursive
algorithm to minimize the predicted root mean square error (RMSE). Details of
ensemble surrogate models can be found in Chap. 3.

Simulation models with different fidelities have been widely used in the design
of complex systems. Three common ways to obtain a low-fidelity (LF) model are

2 1 Introduction
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[43] (a) to simplify the analysis model (e.g. by using a coarse finite element mesh
instead of a refined mesh), (b) to simplify the modelling concept or domain (e.g. by
using a two-dimensional (2D) model instead of a three-dimensional (3D) model)
and (c) to simplify the mathematical or physical description of the system (e.g. by
using the Euler non-cohesive equations instead of the Navier–Stokes viscous
Newton equations). Generally, sample points from high-fidelity (HF) simulations
and models offer more information about the system but at a higher cost (Shan and
Wang 2010). It is impractical to directly incorporate HF models into design opti-
mization because the evaluation of a large number of design alternatives would
incur a high computational cost. However, optimization based on LF models may
lead to a false optimum. A promising way to achieve a trade-off between high
accuracy and efficiency is to adopting multi-fidelity (MF) surrogate models (Zhou
et al. 2015). The goal of MF surrogate modelling is to combine data obtained from
both LF and HF models, with the LF data indicating the trends and a small number
of HF simulations for calibrating the LF model. The three main approaches for
constructing MF surrogate models are scaling-function-based MF surrogate mod-
elling (Burgee et al. 1996; Sun et al. 2012; Tyan et al. 2015), space mapping
(Bandler et al. 2004; Rayas-Sanchez 2016) and co-kriging (Kennedy and O’Hagan
2000; Xiong et al. 2013).

These surrogate modelling techniques play an important role in supporting
engineering design and optimization (Shu et al. 2017): (1) engineers can gain
insight into a system by employing a cheap-to-run surrogate model, (2) surrogate
models offer a better noise filtering capability than gradient-based methods do,
(3) building a surrogate model makes it easier to detect simulation errors and
identify interesting regions as the entire design space is explored and analysed and
(4) building a surrogate model makes parallel computing and optimization simpler
because it involves running the same simulation for many design alternatives (Chen
et al. 2006). In summary, surrogate modelling is a method that is applied in many
disciplines in place of simulation models or physical experiments. It serves as a
cheap and powerful tool for computational expensive analysis and design and
optimization of complex real-world systems. Much more could be said about sur-
rogate models. There are several other published books on this topic in addition to
those mentioned above, e.g. Wan (2009).

1.2 Symbols and Terminology

In this book, several different kinds of variables are used, e.g. scalars, vectors,
matrices and random variables. These variables have different representations in
different research areas, and there are several custom notations. We will attempt to
list some of the notations that are frequently seen so that the reader can understand
them more easily.

1.1 Reasons for Using Surrogate Models 3
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Usually, non-bold letters are used to represent scalars, and bold letters are used
to represent vectors or matrices.

bf ð�Þ, byð�Þ and bgð�Þ are often used to denote surrogate models; see Eqs. (3.1) and
(5.1).

Greek letters are often used to denote the parameters of surrogate models; e.g. bi
and bij represent the parameters of a PRS model in Eq. (2.1). Greek letters with hat

symbols (e.g. r̂2 and b̂) denote estimates of these parameters; see Eq. (2.36).
x usually denotes a vector of design variables. y is usually used to denote the

response of a design. For multiple vectors of design variables, different subscripts
are used to distinguish them.

Certain lowercase letters (i, j, m and n) are often used to denote numbers, e.g. the
number of design variables or the number of sample points.

The general rules above cannot fully cover the usage of all symbols. We present
a description of the meaning of the symbols in each equation. The reader should
infer from the context the type of variable represented by each symbol and its
meaning.
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Chapter 2
Classic Types of Surrogate Models

2.1 Polynomial Response Surface Models

The polynomial response surface (PRS) methodology is a statistical technique that
uses regression analysis and analysis of variance to determine the relationship
between design variables and responses. A linear polynomial is used to approxi-
mate the implicit limit state equation. The coefficients of the linear polynomial are
determined through experimental design. The general form of a PRS model relation
is as follows:

f ðxÞ ¼ b0 þ
Xm
i¼1

bixi þ
Xm
i¼1

Xm
j� i

bijxixj þ � � � þ e ð2:1Þ

where e is the statistical error; xi is the i-th component of the m-dimensional
predictor; and b0, bi and bij are parameters to be estimated and can be arranged in a
certain order to form a column vector b. The key to solving for the fitted model of a
polynomial is to solve for the column vector b. Low-order polynomials are usually
selected for response surface models, and second-order PRS models are widely
used because of their flexibility and ease of use. The number of parameters to be
estimated for such a model is ðmþ 1Þðmþ 2Þ=2, and the number of sample points is
usually greater than ðmþ 1Þðmþ 2Þ=2. By substituting the sample point data into
Eq. (2.1), the model can be written in matrix product form as

f ðxiÞ ¼ Xi �bþ e; ði ¼ 1; 2; . . .; nÞ ð2:2Þ

where Xi is the row vector formed by the sample point components xi in the order
of the corresponding components in b, and the following formula needs to be
satisfied:
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f ðxiÞ ¼ yi ð2:3Þ

where f ðxiÞ is the predicted value and yi is the exact value. Thus, we have

X � b ¼ Y ð2:4Þ

where X ¼
Xi

..

.

Xn

0B@
1CA is a matrix and Y ¼

yi

..

.

yn

0B@
1CA is a vector. In accordance with the

principle of least squares, we can obtain

b ¼ XT X
� ��1

XT Y ð2:5Þ

By substituting Eq. (2.5) into (2.1), we can obtain the required polynomial fitting
model. Its fit function is as follows:

bf ðxiÞ ¼ cb0 þ Xm
i¼1

bbixi þ Xm
i¼1

Xm
j� i

cbijxixj ð2:6Þ

Here, the variables have the same definitions as in Eq. (2.1), and ‘b ’ represents
an estimated value.

A PRS model has good continuity and conductivity, can effectively suppress the
influence of digital noise and is easy to optimize. Moreover, the magnitudes of the
coefficients of the components in Eq. (2.1) can be used as a basis to judge the
magnitude of the influence of each parameter on the response of the entire system.
However, in the case of highly nonlinear high-dimensional problems, the fitting
prediction effect of a PRS model is not ideal, and overfitting can occur when the
polynomial order is high. These problems are caused by the inability of polyno-
mials to represent highly nonlinear relations. To construct a suitable model using
polynomial methods, some suitable function wi xð Þ can be considered in place of xi
in Eq. (2.1). The resulting model can be called a generalized PRS model, and the
mathematical form of such a model is

f ðxÞ ¼
Xm
i¼0

bi wiðxÞ ð2:7Þ

where the function wi xð Þ is determined by the model designer in accordance with
the physical properties of the problem itself.

After a response surface model is constructed, to ensure the adaptability of the
model and determine whether it can truly reflect the statistical relationship between
the optimization target and the design variables, its predictive ability must be
evaluated. Verification must be performed by means of a deterministic factor test.

8 2 Classic Types of Surrogate Models
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The deterministic coefficient is calculated as shown in Eq. (2.8). The value of R2 is
between 0 and 1. The closer the value of R2 is to 1, the higher the reference value of
the related equation; on the contrary, the closer to 0 the deterministic coefficient is,
the lower the reference value:

R2 ¼ 1� SSE
SST

ð2:8Þ

where the sum of the squared residuals is

SSE ¼
Xn
i¼1

ðyi �byiÞ2 ð2:9Þ

and the total sum of the squares is

SST ¼
Xn
i¼1

ðyi �yiÞ2 ð2:10Þ

2.2 Radial Basis Function Models

A radial function is a function in which the Euclidean distance between the point to
be measured and the sample point is used as the independent variable. A model
constructed via linear superposition with radial functions as the basis functions is a
radial basis function model. Radial basis functions are widely used in many fields,
such as discrete data interpolation and image processing.

The basic idea of a radial basis function model is as follows: First, a certain
number of sample points xi ¼ xi1; x

i
2; x

i
3; . . .; x

i
m

� �ði ¼ 1; 2; . . .; nÞ in the design
space are selected through experimental design. Then, each of the selected sample
points is taken as the centre, and the corresponding radial function is used as a basis
function, and these radial functions are linearly fitted to obtain the response value of
the point x to be measured. Finally, the Euclidean distance between the sample
point and the point to be measured is used as an independent variable to transform a
complex multidimensional problem into a simple one-dimensional problem.

When an experimental design yields n sample points, the simple expression for
the radial basis function proxy model is

f ðxÞ ¼
Xn
i¼1

bi �/ð riÞ ¼ bT / ð2:11Þ

2.1 Polynomial Response Surface Models 9
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where b ¼
b1
..
.

bn

0B@
1CA, / ¼

/ðriÞ
..
.

/ðriÞ

0B@
1CA, the bi are the weight coefficients, /ðrÞ is a

radial function and ri ¼ x� xik k is the Euclidean distance between the point x to
be measured and the sample point xi.

When Eq. (2.11) is used as a prediction model, it must satisfy the following
interpolation conditions:

f ðx jÞ ¼ y j; ðj ¼ 1; 2; � � � ; nÞ ð2:12Þ

where f ðx jÞ is the predicted value and y j is the exact value. Substituting Eq. (2.12)
into Eq. (2.11) yields the following formula:

U � b ¼ Y ð2:13Þ

where U ¼
/ð x1 � x1
�� ��Þ � � � /ð x1 � xn

�� ��
..
. ..

. ..
.

/ð xn � x1
�� �� � � � /ð xn � xnk k

0B@
1CA and Y ¼

y1

..

.

yn

0B@
1CA.

When the sample points in Eq. (2.8) do not coincide and the matrix U is
non-singular, there is a unique solution, and the weight coefficients can be obtained
as follows:

b ¼ U�1 � Y ð2:14Þ

The radial functions that are commonly used in radial basis function proxy
models are shown in Table 2.1.

In this table, r is the Euclidean distance between the point x to be measured and
any sample point, and c is a constant parameter greater than zero, which is also a
shape parameter.

The properties of radial basis function models vary with the radial functions
employed. When Gaussian functions or inverse multi-quadric functions are used as
the basis functions in a radial basis function model, the model will possess char-
acteristics of local estimation due to the influence of the radial function. By contrast,

Table 2.1 Common radial
basis functions

Related function name /ðrÞ
Gauss function /ðrÞ ¼ expð� r2

c2 Þ; c[ 0

Multi-quadric (MQ) function /ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
; c[ 0

Inverse multi-quadric function /ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p ; c[ 0

Thin-plate splines function /ðrÞ ¼ ð rc2Þ logðrcÞ; c[ 0

10 2 Classic Types of Surrogate Models
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when a multi-quadric function is used as the kernel function, the model will possess
characteristics of global estimation. Radial basis function models are proxy models
with good flexibility, simple structures, relatively few calculations and high effi-
ciency. The most commonly used basis function form is a Gaussian kernel function,
and the output of a Gaussian radial basis function model can be expressed as
follows:

f ðxÞ ¼
Xn
i¼1

bi � exp
�ðriÞ2
c2

 !
; ð2:15Þ

The variables in this formula have the same definitions as in Eq. (2.11), i.e.
ri ¼ x� xik k is the Euclidean distance between the point x to be measured and the
sample point xi.

2.3 Support Vector Regression Models

A support vector regression (SVR) model is a support vector machine
(SVM) model applied to a regression problem. SVR models can be divided into
linear SVR models and nonlinear SVR models. Linear SVR models are suitable for
simple linearly separable cases, while nonlinear SVR models are suitable for
high-dimensional, complex and linearly inseparable cases. The construction process
and mechanism of the two types of models are the same; the difference is that in a
nonlinear SVR model, the linear segmentation function in a linear SVR model is
replaced with a kernel function. Therefore, to clarify the modelling mechanism for
SVR models, a linear SVR model will be introduced here to serve as an example.

In the process of constructing a linear SVR model, the goal is to find a linear
function f xð Þ to separate the data. f xð Þ can be expressed as follows:

f xð Þ ¼ x � xh iþ b ð2:16Þ

Here, x � xh i denotes the inner product of x and x.
In Fig. 2.1, the red line represents f xð Þ, and the points represent all sample

points in the training set.
There are two basic requirements for building a linear SVR model: (1) Each

input training sample point must deviate from f xð Þ by no more than e to ensure that
f xð Þ is well characterized for the training set. (2) The value of x in the trained f xð Þ
should be as small as possible to ensure the smoothness of the f xð Þ function. The
smoother f xð Þ is, the better the prediction performance. In accordance with these
two basic requirements, the linear SVR model can be constructed as follows:

2.2 Radial Basis Function Models 11
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min
1
2
wj j2

s:t:
yi � w � xh i � b� e

w � xh iþ b� yi � e

(
i ¼ 1; 2; 3; . . .; n

ð2:17Þ

where n denotes the total number of sample points in the training set.
Equation (2.17) is a mathematical model obtained by assuming that the devia-

tion between f xð Þ and each sample point does not exceed e. However, in a real
modelling scenario, there may be intervals in which individual sample points
exceed �e, and the information contained in these points is valuable for the con-
struction of the model, as shown in Fig. 2.2. To allow some sample points to
exceed the interval of �e, that is, some out-of-bounds points, it is necessary to
modify the process of model construction accordingly.

For such cases, the slack variables ni and n�i are introduced, and a penalty factor
C (C[ 0) is defined. The penalty factor is a preselected constant set to balance the
smoothness and slack variable size during the construction of the linear SVR
model. With these modifications, the expression for the constructed linear SVR
model is

min
1
2
wj j2 þC

Xn
i¼1

ni þ n�i
� 	

s:t:

yi � w � xh i � b� eþ ni

w � xh iþ b� yi � eþ n�i

ni; n
�
i � 0

8>><>>: i ¼ 1; 2; 3; . . .; n

ð2:18Þ

Fig. 2.1 Modelling with a
linear SVR model

12 2 Classic Types of Surrogate Models
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Lagrangian multipliers are introduced into Eq. (2.18) to solve the optimization
problem. The Lagrangian equation is

L ¼ 1
2
wj j2 þC

Xn
i¼1

ni þ n�i
� 	�Xn

i¼1

ai eþ ni � yi þ w � xh iþ bð Þ

�
Xn
i¼1

ai eþ n�i þ yi � w � xh i � b
� 	�Xn

i¼1

bini þ b�i n
�
i

� 	 ð2:19Þ

In accordance with Lagrangian equation theory, b, w, ni and n�i in Eq. (2.19) are
separately biased to obtain the following equations:

@bL ¼
Xn
i¼1

a�i � ai
� 	 ¼ 0 ð2:20Þ

@wL ¼ w�
Xn
i¼1

a�i � ai
� 	

xi ¼ 0 ð2:21Þ

@niL ¼ C � ai � gi ¼ 0 ð2:22Þ

@n�i L ¼ C � a�i � g�i ¼ 0 ð2:23Þ

By substituting Eqs. (2.20), (2.21), (2.22) and (2.23) into (2.18) along with the
slack variables, the original optimization problem can be transformed into the
corresponding dual problem as follows:

Fig. 2.2 Linear function
modelling with a linear SVR
model (presenting slack
variables)

2.3 Support Vector Regression Models 13
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max

� 1
2

Xn
i;j¼1

ai � a�i
� 	

aj � a�j

 �

xi � xj
� 

�e
Xn
i¼1

ai þ a�i
� 	þ Xn

i¼1

yi ai � a�i
� 	

8>>>><>>>>:
s:t:

Xn
i¼1

ai � a�i
� 	 ¼ 0

ai; a
�
i 2 ½0;C�

8>><>>:
ð2:24Þ

The final expression for the linear regression function to be solved is

f xð Þ ¼
Xn
i¼1

a�i � ai
� 	

xi � xh iþ b ð2:25Þ

The construction mechanism for a nonlinear SVR model is essentially the same
as that for a linear SVR model. During the construction process, the kernel function
k xi; xj
� 	

is introduced, and the linear indivisibility condition is mapped to a
high-dimensional feature space to achieve linear separability in that feature space.
The working principle of the kernel function is illustrated in Fig. 2.3.

By introducing the kernel function k xi; xj
� 	

into Eq. (2.24), the following
mathematical expression is obtained for a nonlinear SVR model:

Fig. 2.3 Schematic diagram of the working principle of the kernel function

14 2 Classic Types of Surrogate Models
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max

� 1
2

Xn
i;j¼1

ai � a�i
� 	

aj � a�j

 �

k xi ; xj
� 

�e
Xn
i¼1

ai þ a�i
� 	þ Xn

i¼1

yi ai � a�i
� 	

8>>>><>>>>:
s:t:

Xn
i¼1

ai � a�i
� 	 ¼ 0

ai; a
�
i 2 ½0;C�

8>><>>:
ð2:26Þ

Therefore, the final nonlinear SVR model is expressed as

f xð Þ ¼
Xn
i¼1

a�i � ai
� 	

k xi ; xh iþ b ð2:27Þ

Commonly used kernel functions include the linear kernel function, polynomial
kernel functions, the Gaussian kernel function, the sigmoid kernel function and
non-homogeneous polynomial kernel functions. The specific expressions for these
function types are shown in Table 2.2.

2.4 Gaussian Process Models

A Gaussian process (GP) model is an approximate model constructed using a
constrained regression method. GP models have been increasingly used in the fields
of design optimization and uncertainty quantification for the following reasons
(Sasena et al. 2002; Desautels et al. 2014; Zheng et al. 2016): ① GP models belong
to the interpolation class of approximation models, that is, a GP model passes
through all test sample points, which is necessary for deterministic simulations. ②
If there is noise in the output response, a GP model can still be interpolated based
on its own modelling mechanism (the ‘block gold effect’ or error term). ③ Usually,
the function to be fitted is a black-box function, that is, the intrinsic properties of

Table 2.2 Common kernel functions for SVR models

Name Expression

Linear kernel function k x; x0ð Þ ¼ xT � x0
Polynomial kernel function k x; x0ð Þ ¼ x � x0h id
Gaussian kernel function k x; x0ð Þ ¼ exp � x�x0

2r2
� 	

Sigmoid kernel function k x; x0ð Þ ¼ tanh k x � x0h i þ hð Þ
Non-homogeneous polynomial kernel function k x; x0ð Þ ¼ x � x0h iþ cð Þd

2.3 Support Vector Regression Models 15
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this function are unknown; therefore, the fact that GP models offer good adapt-
ability to most function types is advantageous. ④ As a probabilistic model, a GP
model is suitable for integrating data from various stages, including a priori
information obtained by the designer.⑤ A GP model can generate prediction errors
at non-test-sample points. This feature is especially important for obtaining the
prediction accuracy of an approximate model based on a finite number of sample
points. In this section, the basic principles of GP models are briefly introduced. For
a more detailed theoretical discussion, see the paper by Rasmussen et al. (Audet
et al. 2000).

In general, a GP model can be expressed as

f ðxÞ	GPðmð�Þ; kð�; �ÞÞ ð2:28Þ

Here, mðxÞ represents the a priori mean function, which can be expressed as

mðxÞ¼hðxÞb ð2:29Þ

where hðxÞ represents the regression function vector and b is the regression coef-
ficient vector.

The expression kðx; x0Þ represents the variance function at design point x and
sample point x0; this function can be expressed as

kðx; x0Þ ¼ cov f ðxÞ; f ðx0Þf g¼r2R x� x0ð Þ ð2:30Þ

where Xs is the standard deviation for determining the overall magnitude of the

variance, and Rðx� x
0 Þ is the correlation function for the output response at design

point x and sample point x0. Commonly used forms of correlation functions are
shown in Table 2.3.

In Table 2.3, h1; . . .; hu are roughness parameters indicating the rate at which the
correlation between the output responses at design point x and sample point x0

decays to zero with the difference between design point x and sample point x0.
Here, the Gaussian correlation function is selected to relate the output responses

at design point x and sample point x0, namely,

R x� x0ð Þ ¼ exp �
Xu
j¼1

hj xj � x0j

 �2( )

ð2:31Þ

Then, the variance function of the output responses at design point x and sample
point x0 can be expressed as

kðx; x0Þ ¼ r2 exp �
Xu
j¼1

hj xj � x0j

 �2( )

ð2:32Þ
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where b, r2 and h are hyper-parameters. These hyper-parameters can be obtained
through maximum likelihood estimation. The maximum likelihood function of the
hyper-parameters can be expressed as follows:

pðyjb; r2; hÞ ¼ 1

ð2pr2ÞN=2 Rj j1=2
exp � 1

2r2
ðy� HbÞTR�1ðy� HbÞT

� �
ð2:33Þ

Taking the logarithmic form of this maximum likelihood function, we obtain

Inðpðyjb; r2; hÞÞ ¼ �N
2
Inð2pÞ � N

2
Inðr2Þ � 1

2
Inð Rj j1=2Þ

� 1
2r2

ðy� HbÞTR�1ðy� HbÞT
ð2:34Þ

To obtain the maximum likelihood estimate of L, the partial derivative of
Eq. (2.34) is obtained, and its value is set to 0; thus, the maximum likelihood
estimate b̂ of b is obtained as follows:

b̂ ¼ HTR�1H
� ��1

HTR�1y ð2:35Þ

To obtain the maximum likelihood estimate of r2, the maximum likelihood
estimate Tu of k is substituted into Eq. (2.34), and the partial derivative of
Eq. (2.34) is obtained and set to 0. The maximum likelihood estimate r̂2 of r2 is

r̂2 ¼ 1
N
ðy� Hb̂ÞTR�1ðy� Hb̂Þ ð2:36Þ

Because of the complexity of the mathematical relationship between the maxi-
mum likelihood function of the hyper-parameters and h, it is difficult to obtain the
maximum likelihood estimate of h by obtaining partial derivatives of the maximum
likelihood function as in the cases of xi and Hl. Therefore, an optimization algo-
rithm is instead used to solve for the maximum likelihood estimate ĥ of h. By
substituting the maximum likelihood estimates of b and r2 into Eq. (2.34), a
mathematical model can be established to solve for the maximum likelihood esti-
mate of h:

max Inðpðyjb; r2; hÞÞ ¼ �N
2
Inð2pÞ � N

2
Inðr̂2Þ � 1

2
Inð Rj j1=2Þ � N

2
ð2:37Þ

Here, sequential quadratic programming (SQP) is used to solve the above
optimization problem.

Given input sample points xo ¼ xo1; x
o
2; . . .; x

o
mo

n o
and the corresponding output

responses f o ¼ f o1 ; f
o
2 ; . . .; f

o
mo

n o
, the purpose of establishing a GP model is to
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estimate the output response fpðxpÞ at design point xp¼ xp1; x
p
2; . . .; x

p
mp

n o
. According

to the definition of a GP model, the joint Gaussian distribution of the output
response f o at the sample point and the output response fpðxpÞ at the design point
can be expressed as

fo
fpðxpÞ

" #
	N

mðxoÞ
mðxpÞ

" #
;

Ko KT
op

Kop Kp

" # !
ð2:38Þ

where mðxo ¼ HbÞ represents the mean vector derived from the sample points. The
variance matrix is similar to the variance function Kðx; x0Þ and can be decomposed
into the training set covariance Ko, the verification set covariance Kp and the
training–validation set covariance Kop. Since the output response f o at each sample
point is a priori information, the posterior distribution of fpðxpÞ is still a Gaussian
distribution, which can be obtained through standard Bayesian analysis:

fpðxpÞjfo 	NðEðfpðxpÞjfoÞ; cov fpðxpÞ; fpðx0pÞjfo
n o

Þ ð2:39Þ

In this expression, the mean EðfpðxpÞjfoÞ and the covariance
covffpðxpÞ; fpðx0pÞjfog can be calculated as follows:

EðfpðxpÞjfoÞ ¼ hðxpÞb̂þKopK
�1
o ðfo � Hb̂Þ ð2:40Þ

cov fpðxpÞ; fpðx0pÞjfo
n o

¼ Kp � KopK
�1
o KT

op

þðhTðxÞ � HTK�1
o KT

opÞTðHTK�1
o HÞ�1ðhTðxÞ � HTK�1

o KT
opÞ

ð2:41Þ

Notably, Eq. (2.18) is the posterior distribution of fpðxpÞ, and Eq. (2.39) is the
prior distribution of fpðxpÞ. A numerical example is presented below to illustrate
their differences.

y ¼ � sinðxÞ � ex=100 þ 10 ; 0� x� 10 ð2:42Þ

Figure 2.4 depicts the prior and posterior distributions of fpðxpÞ in the design
space. The prior distribution is a GP in which the mean function is a quadratic
function. When the information at the five sample points is added to the GP, the
posterior distribution of fpðxpÞ in the design space is obtained. The shaded areas in
the prior and posterior distributions represent the 95% confidence intervals.
Compared with the prior-distribution GP model shown in Fig. 2.4a, the mean and
covariance of the posterior-distribution GP model shown in Fig. 2.4b reflect the
added sample point information.
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2.5 Backpropagation Neural Network Models

A backpropagation (BP) neural network is a multi-layer feedforward network. The
gradient descent method is used to train the weight values of such neural networks
via backpropagation to solve complex nonlinear problems in engineering. Such
models are considered as the starting point of neural network research in the context
of modern engineering. BP neural networks are trained through the backward
propagation of errors. Error feedback is used to continuously adjust the weight
values in the network layer by layer in the reverse direction. Currently, the most
widely used neural networks mostly consist of BP networks and their variants. The
structure of such a network is shown in Fig. 2.5. When the output error is within the
set error range, the number of error steps has exceeded the set value, or a selected
maximum number of learning iterations or maximum learning time has been
reached, the learning process is terminated and network training ends.

For the three-layer BP neural network shown in Fig. 2.5, the input vector is
denoted by X ¼ ðx1; x2; . . .; xmÞ. The hidden-layer input vector is

Fig. 2.4 GP model example

Fig. 2.5 Three-layer BP
neural network topology
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B ¼ ðb1; b2; . . .bpÞ, the hidden-layer output vector is C¼ðc1; c2; . . .cpÞ, the
output-layer input vector is L ¼ ðl1; l2; . . .lnÞ, the output-layer output vector is
O ¼ ðo1; o2; . . .onÞ and the expected final output vector is Y ¼ ðy1; y2; . . .; ynÞ.

In a BP neural network, the neurons in each layer are connected to the neurons in
the next layer in a fully connected manner, that is, each neuron of the current layer
is connected to each neuron of the next layer. However, there is no connection
relationship between neurons at the same level. The connections between neurons
are modified by weights. Therefore, the training process for a BP neural network is
actually a process of iteratively updating the connection parameters for the entire
network.

Each neuron in a BP neural network is divided into an input and an output, and
each neuron has an activation function. The input to the neuron needs to be pro-
cessed by the activation function to produce an output. The activation functions of
all neurons in the same layer are generally the same, whereas different activation
functions may be chosen for neurons in different layers. The input layer is generally
used only for signal transfer; thus, a linear function can generally be directly used in
this layer. In a single-layer perceptual network (M-P model), an early type of neural
network, a hidden layer is added to handle nonlinear problems. For the neurons in
this layer, the sigmoid function is generally adopted, as shown in Eq. (2.43):

SðxÞ ¼ 1
1þ e�x

ð2:43Þ

The sigmoid function provides the neural network with the ability to solve
nonlinear problems. It is characterized by a limited output range of (0, 1). It can be
used to predict the probability of a certain sample belonging to a certain category
when used to solve a classification problem. In addition, this function is differen-
tiable everywhere in the domain on which it is defined, and its derivative is

S0ðxÞ ¼ e�x

ð1þ e�xÞ2 ¼
1

1þ e�x
� 1

ð1þ e�xÞ2 ¼ SðxÞ½1� SðxÞ� ð2:44Þ

In the case of regression prediction problems, a linear function is generally used
as the activation function for the neurons in the output layer. In the case of clas-
sification problems, the sigmoid function is generally used in the output layer, in the
same way as for the neurons in the hidden layer, and the output value of each
neuron is taken as the probability of the corresponding category to serve as a
reference for the probability decision. Here, the sigmoid function is used as the
excitation function f ðxÞ for both the hidden layer and the output layer.

The steps of training a BP neural network are as follows:
Step 1: Neural network initialization. The connection weights and thresholds of

the input layer, the hidden layer and the output layer are randomly assigned values
in the range of (−1, 1).
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Step 2: The t-th input sample data Xt ¼ ðxt1; xt2; . . .; xtmÞ and the corresponding
expected output sample data Yt ¼ ðyt1; yt2; . . .; ytnÞ are extracted using a random
method and fed to the neural network.

Step 3: The input bj and output ck of each neuron in the hidden layer and the
input lk and output ok of the output layer are calculated using the connection
weights and thresholds of each layer:

bj ¼
Xm
i¼1

wjixi � hj; j ¼ 1; 2; . . .; p ð2:45Þ

cj ¼ f ðbjÞ; j ¼ 1; 2; . . .; p ð2:46Þ

lk ¼
Xp
j¼1

wkjcj � hk; k ¼ 1; 2; . . .; n ð2:47Þ

ok ¼ f ðlkÞ; k ¼ 1; 2; . . .; n ð2:48Þ

Here, wji is the weight of a connection from the input layer to the hidden layer,
that is, the weight of the connection from the i-th neuron of the first layer to the j-th
neuron of the second layer. wkj is the weight of a connection from the hidden layer
to the output layer, that is, the weight of the connection from the j-th neuron of the
second layer to the k-th neuron of the third layer. xi represents the input to the i-th
node of the input layer, ok represents the input to the k-th node of the input layer, hj
represents the threshold for the j-th node of the hidden layer, and hk represents the
threshold for the k-th node of the hidden layer.

Step 4: Using the expected and actual outputs of the network, the training error
Et for the t-th sample is calculated using the established empirical formula:

Et ¼ 1
2

Xn
k¼1

ðytk �otkÞ2 ð2:49Þ

Step 5: The error Et of each neuron obtained from the output layer and the
output of each neuron in the hidden layer are used to correct the connection weights
and thresholds between the hidden and output layers.

The following formula is used to continuously improve the weights of the output
layer:

Dwkj ¼ �g
@Et

@wkj
ð2:50Þ

where g is called the learning efficiency of the neural network.
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@Et

@wkj
¼

1
2

Pn
k¼1 ðytk �otkÞ2
@wkj

¼
1
2

Pn
k¼1 ðytk �otkÞ2

@ok

@ok
@lk

@lk
@wkj

¼ � ðytk �otkÞf 0ðlkÞcj
ð2:51Þ

where f 0ðlkÞ is the partial derivative of the excitation function with respect to the
input lk to the output layer.

Thus, the iterative formula for adjusting the weights of the connections from the
hidden layer to the output layer is

wkjðtþ 1Þ ¼ wkjðtÞþDwkj ¼ wkjðtÞþ gðytk �otkÞf 0ðlkÞcj ð2:52Þ

The following expression is used to continuously improve the output-layer
thresholds:

Dhk ¼ �g
@ Et

@hk
ð2:53Þ

@ Et

@hk
¼

1
2

Pn
k¼1

ðytk �otkÞ2

@hk
¼

1
2

Pn
k¼1

ðytk �otkÞ2

@ok

@ok
@lk

@lk
@hk

¼ �ðytk �otkÞf 0ðlkÞ � ð�1Þ ¼ ðytk �otkÞf 0ðlkÞ
ð2:54Þ

Thus, the iterative formula for adjusting the thresholds between the hidden layer
and the output layer is

hkðtþ 1Þ ¼ hkðtÞþDhk ¼ hkðtÞ � gðytk �otkÞf 0ðlkÞ ð2:55Þ

Step 6: The connection weights and thresholds between the input and hidden
layers are corrected based on the error of each node of the hidden layer and the
input to each neuron of the input layer.

Similarly, the iterative formula for adjusting the weights of the connections from
the input layer to the hidden layer is

@Et

@wji
¼

1
2

Pn
k¼1 ðytk �otkÞ2

@wji
¼

1
2

Pn
k¼1 ðytk �otkÞ2

@cj

@cj
@bj

@bj
@wji

ð2:56Þ

where @Et

@cj
¼
Pn
k¼1

ðytk �otkÞ2

@ok
@ok
@lk

@lk
@cj

¼ �ðytk �otkÞ � f 0ðlkÞ � wkj,
@cj
@bj

¼ f 0ðbjÞ, and @bj
@wji

¼ xi.

Then,

@Et

@wji
¼

1
2

Pn
k¼1 ðytk �otkÞ2

@wji
¼ �ðytk �otkÞ � f 0ðlkÞ � wkj � f 0ðbjÞ � xi ð2:57Þ
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Therefore, the iterative formula for adjusting the weights between the input and
hidden layers is

wjiðtþ 1Þ ¼ wjiðtÞþDwji ¼ wjiðtÞþ gðytk �otkÞf 0ðlkÞwkjf 0ðbjÞxi ð2:58Þ

The expression for the constant improvement of the hidden-layer thresholds is

@ Et

@hj
¼

1
2

Pn
k¼1 ðytk �otkÞ2

@hj
¼

1
2

Pn
k¼1 ðytk �otkÞ2

@cj

@cj
@bj

@bj
@hj

ð2:59Þ

Thus,

@Et

@hj
¼

1
2

Pn
k¼1 ðytk �otkÞ2

@hj
¼ �ðytk �otkÞ � f 0ðlkÞ � wkj � f 0ðbjÞ � ð�1Þ ð2:60Þ

Therefore, the iterative formula for adjusting the thresholds between the input
layer and the hidden layer is

hjðtþ 1Þ ¼ hjðtÞþDhj ¼ hjðtÞ � gðytk �otkÞf 0ðlkÞwkjf 0ðbjÞ ð2:61Þ

Step 7: Another sample is randomly selected from among the remaining training
samples to further train the network, and the training process returns to Step 3 until
training with N training samples has been completed. The global error E is cal-
culated as follows:

E ¼ 1
N

XN
t¼1

Et ð2:62Þ

For the training of the neural network, a maximum number of iterations, a
maximum error threshold and a maximum training time are set. When any of these
conditions is met, the training ends, and by comparing the training time, the number
of training iterations, and the training error, it is judged whether the trained neural
network meets the established requirements.

The following figure shows the specific calculation flowchart for a BP neural
network.

2.6 Performance Comparison of Different Surrogate
Models

In this section, the performance of PRS model, RBF model, SVR model, GP model
and BP neural network model is illustrated through eight numerical examples.
Some factors that may influence the evaluation results are taken into consideration,
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such as the dimensions of the problem, number of samples and noise level. Some
general conclusions can be obtained from the comparison results, which can be
instructions of the selection of surrogate models for problems with different
characteristics.

Eight numerical examples, with dimensions from 2 to 16, are used to test these
surrogate models. The formulas of these eight problems can be depicted as follows:

Function 1 (F1): SC function

f ðxÞ ¼4x21 � 2:1x41 þ x61=3þ x1x2 � 4x22 þ 4x42
x 2 ½�2; 2�2

ð2:63Þ

Function 2 (F2): RB function

f ðxÞ ¼100ðx2 � x21Þ2 þðx1 � 1Þ2

x 2 ½�2; 2�2
ð2:64Þ

Function 3 (F3): LF3 function

f ðxÞ ¼ sin2ðpx1Þþ
X2
i¼1

ðxi � 1Þ2½1þ 10 sin2ðpxi þ 1Þ�

þ ðx3 � 1Þ2½1þ sin2ð2px3Þ�
xi ¼ 1þ xi � 1

4
; i ¼ 1; 2; 3; xi 2 ½�10; 10�

ð2:65Þ

Function 4 (F4): AF4 function

f ðxÞ ¼ � 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

x2i

s !
� exp

1
n

Xn
i¼1

cosð2pxiÞ
 !

þ 20þ expð1Þ

x 2 ½�2; 2�4
ð2:66Þ

Function 5 (F5): HN6 function
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f ðxÞ ¼ � 1
1:94

2:58þ
X4
i¼1

ai exp �
X6
j¼1

Aijðxj � PijÞ2
 !" #

; x1;...;6 2 ð0; 1Þ

a ¼ ð1:0; 1:2; 3:0; 3:2ÞT

A ¼

10 3 17 3:50 1:7 8

0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8

17 8 0:05 10 0:1 14

0BBB@
1CCCA

P ¼ 10�4

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

0BBB@
1CCCA

ð2:67Þ

x 2 ½0; 1�6

Function 6 (F6): GN8 function

f ðxÞ ¼ 1
4000

Xn
i¼1

x2i �
Yn
i¼1

cos
xiffiffi
i

p
� �

þ 1

x 2 ½�600; 600�8
ð2:68Þ

Function 7 (F7): TR10 function

f ðxÞ ¼
Xn
i¼1

ix2i

x 2 ½�100; 100�10
ð2:69Þ

Function 8 (F8): F16 function
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f ðxÞ ¼
Xn
i¼1

Xn
j¼1

aijðx2i þ xi þ 1Þðx2j þ xj þ 1Þ; i; j ¼ 1; 2; . . .; n

a¼

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

26666666666666666666666666666666664

37777777777777777777777777777777775

ð2:70Þ

x 2 ½�1; 1�16

Among them, Functions 1–4 are regarded as low-dimensional problems, while
Functions 5–8 are regarded as high-dimensional problems (Fig. 2.6).

2.6.1 Influence of Sample Size

The influence of sample size on the performance of different surrogate models is
investigated first. Two commonly used metrics, i.e. max absolute error (MAE) and
root mean square error (RMSE), are calculated to measure the accuracy of surrogate
models (Shu et al. 2017). The MAE evaluates the local accuracy of the surrogate
models while the RMSE evaluates the global accuracy. The lower the value of
RMSE and MAE, the more accurate the surrogate model. The two error metrics are
calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
1

ŷðxiÞ � yðxiÞ½ �2
s

ð2:71Þ
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MAE ¼ max ŷðxiÞ � yðxiÞj j ð2:72Þ

The error metrics of low-dimensional problems obtained by different surrogate
models are plotted in Fig. 2.7a–h. The number of sample points is varied from 3 to
11 times of the number of design variables. In addition to the PRS model, it is
obvious that with the increasing number of sample points, the prediction error of
surrogate models decreases. After the surrogate models achieve a high accuracy,
continue adding more sample point will contribute little to the prediction accuracy.
The performance of the PRS model is the most unstable. For Function 1 and
Function 2, it gives the best accuracy. However, for Function 3 and Function 4, it
has the worst prediction performance. The performance of kriging model and RBF
model is very stable and better than that of BPNN model and SVR model. In

Fig. 2.6 Construction process of the BP neural network
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summary, the kriging model and the RBF model are more suitable than other three
surrogate models for low-dimensional problems.

The error metrics of high-dimensional problems obtained by different surrogate
models are plotted in Fig. 2.8a–h. It can be seen in Fig. 2.8 that the prediction
performance of PRS model is worse than the other surrogate models. In addition to
the last function, kriging models are the most accurate. For Function 8, the pre-
diction performance of the kriging model is slightly worse than the RBF model but
better than other surrogate models. For Function 5–7, the prediction error of the
RBF model is not satisfactory. In summary, kriging model is the best choice for
high-dimensional problems.

2.6.2 Influence of Noise Level

The sampling noise may be included in the responses in engineering applications,
which may affect the accuracy of the surrogate model. To test the predictive per-
formance of different surrogate modelling approaches in the presence of noise,
artificial noises are added to the response values of the output parameter according
to the following formula (Zhao and Xue 2010; Zhou et al. 2016):

Y ¼ f xð Þþ l0d ð2:73Þ

where l
0
= 0–20% is a scaling parameter and d is a random number sampled from

the standard Gaussian distribution N	ð0; 1Þ. Five levels of artificial noises, 0%,
5%, 10%, 15% and 20%, are added to the response values of the corresponding
sample points using Eq. (2.73). The number of sample points is 10 times of the
number of design variables. The accuracy results under different levels of noises are
plotted in Figs. 2.9 and 2.10.

Overall, as the noise level increases, the prediction error will increase. In terms
of the prediction performance of different surrogate models, PRS model can obtain
accurate surrogate model for Function 1 and Function 2, while it shows the worst
performance for other functions. For most cases, the prediction error of BPNN
model is larger than those of kriging model, RBF model and SVR model. The SVR
model does not show particularly good performance for all functions, and it is the
most inaccurate for Function 1 and Function 2. The RBF model performs very well
only for Function 8. The kriging model is the most accurate surrogate model for
almost all test functions; it is only second to the RBF model for Function 8.
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 (a) MAE of function 1             (b) RMSE of function 1 

 (c) MAE of function 2             (d) RMSE of function 2 

 (e) MAE of function 3             (f) RMSE of function 3 

 (g) MAE of function 4             (h) RMSE of function 4 

Fig. 2.7 Test results of low-dimensional functions under different sample sizes
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 (a) MAE of function 5             (b) RMSE of function 5 

 (c) MAE of function 6             (d) RMSE of function 6 

 (e) MAE of function 7             (f) RMSE of function 7 

 (g) MAE of function 8             (h) RMSE of function 8 

Fig. 2.8 Test results of high-dimensional functions under different sample sizes
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  (a) MAE of function 1             (b) RMSE of function 1 

 (c) MAE of function 2             (d) RMSE of function 2 

 (e) MAE of function 3             (f) RMSE of function 3 

 (g) MAE of function 4             (h) RMSE of function 4 

Fig. 2.9 Test results of low-dimensional functions under different noise levels
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 (a) MAE of function 5             (b) RMSE of function 5 

 (c) MAE of function 6             (d) RMSE of function 6 

 (e) MAE of function 7             (f) RMSE of function 7 

  (g) MAE of function 8             (h) RMSE of function 8 

Fig. 2.10 Test results of high-dimensional functions under different noise levels
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Chapter 3
Ensembles of Surrogate Models

An ensemble of surrogate models (EM) is a surrogate model composed of a series
of surrogate models combined through a weighted sum. An EM can take advantage
of each individual surrogate model to effectively increase the robustness of the
prediction. The mathematical expression for an EM can be given as follows:

ŷeðxÞ ¼
XN
i¼1

wiðxÞŷiðxÞ ð3:1Þ

where x is the vector of design variables, ŷeð�Þ is the response predicted by the EM,
N is the number of individual surrogate models, wiðxÞ is the weight for the i-th
surrogate model at point x and ŷið�Þ is the response predicted by the i-th surrogate.
The sum of the weights in the EM must be equal to one, that is,

XN
i¼1

wiðxÞ ¼ 1 ð3:2Þ

The key step in constructing an EM is to calculate the weight for each surrogate
model. Generally, surrogate models with higher prediction accuracies tend to have
larger weight coefficients.

The existing EMs can be divided into two categories according to the method
used to calculate the weights: weighted average surrogate models and pointwise
weighted EMs. The main principle used to calculate the weight coefficients in a
weighted average surrogate model is to assign a weight to each component sur-
rogate model in accordance with its global performance. Since global error metrics
estimate the errors of each surrogate model over the whole design space, the weight
factor for a particular model will be the same at all points. Instead of utilizing global
error metrics, the weights for the individual surrogate models in a pointwise
weighted EM are calculated using local error metrics, which means that the weight
for each individual surrogate model will vary throughout the design space.
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Compared with the average weighting method, the pointwise weighting strategy
can better capture the local features of the objective function by allowing flexible
adjustments of the local weight coefficients in the design space.

Some typical methods of creating an EM are introduced in this chapter.

3.1 Weighted Average Surrogate Models

3.1.1 Weight Factor Selection Based on the Generalized
Mean Square Cross-Validation Error (GMSE)

Cross-validation errors are widely used in weight selection for EMs. The sample
points are divided into a training set and a test set; intermediate surrogate models
are constructed using the training set, and their accuracies are evaluated using the
test set. By combining the errors at different sample points, an overall error estimate
for each surrogate model is obtained. Two commonly used cross-validation-based
error metrics are the generalized mean square cross-validation error (GMSE) and
the predicted residual error sum of squares (PRESS). The formulas of the GMSE
and PRESS are written as

GMSE ¼ 1
N

XN
i¼1

ðyi � ŷiÞ2 ð3:3Þ

PRESS ¼
XN
i¼1

ðyi � ŷiÞ2 ð3:4Þ

where yi is the true response at xi, N is the number of samples and ŷi is the
prediction value by the i-th surrogate model, which is constructed based on all
N � 1 samples other than sample xi.

Commonly used ensemble methods based on the GMSE are discussed in the
following subsections.

3.1.1.1 Inverse Proportional Averaging Method

Under the assumption that the estimated errors of different individual surrogate
models are unbiased and uncorrelated, a direct way to obtain the optimal weight for
each surrogate model is to calculate the ratio of its GMSE to that of the population
of all individual models in an inversely proportional manner, as follows:
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wi ¼ GMSE�1
iPM

j¼1 GMSE�1
j

ð3:5Þ

where wi is the weight of the i-th individual surrogate model in the combined
approximation model, GMSEi is the prediction accuracy test index for the i-th
surrogate model and M is the number of surrogate models.

3.1.1.2 Heuristic Computation of the Weight Coefficients

Goel et al. (2007) noted two issues related to weight selection: (1) The calculated
weights should reflect the designer’s confidence about the surrogate models.
(2) The optimal weights should attempt to avoid adverse modelling effects, which
means that the constructed model will have low generalizability. To address these
two issues, Goel et al. (2007) proposed a new approach for creating an EM as an
alternative to the proportional averaging method. This weighting scheme can be
described as follows:

wi ¼ w�
iPM

j¼1 w
�
j

w�
i ¼ Ei þ a�Eð Þb

�E ¼ 1
M

XM
i¼1

Ei

a\1; b\0

8>>>>>>>>><>>>>>>>>>:
ð3:6Þ

where Ei is the error of the i-th individual surrogate model, �E is the average error of
all surrogate models, M is the number of surrogate models forming the EM and a
and b are two constant coefficients that control the importance of the average error
and the error of the individual surrogate models, respectively. A small a value and a
large negative b value place greater importance on the error of the individual
surrogate models, while a large a value and a small negative b value indicate high
confidence in the average solution. The results of Goel et al. suggest that the EM
has the best stability when a ¼ 0:05 and b ¼ �1.

The weighting scheme in Eq. (3.6) is often used together with the GMSE
defined in Eq. (3.3), which provides an error measure based on global data and is
usually used in the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMSEj

p
instead of Ej; consequently, this method is

sometimes also called the PRESS-based weighting method.
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3.1.1.3 Weight Factor Selection Based on Error Minimization

Acar et al. (2009) regard the computation of the weight coefficients for an EM as an
optimization process. The weight coefficients wi of the individual surrogate models
are chosen as the design variables, and the objective function of the optimization
problem is the minimization of the GMSE value for the EM. The optimization
problem can be mathematically expressed as follows:

find wi ði ¼ 1; 2; . . .;MÞ
min ee ¼ Err ŷeðwi; ŷiðxkÞÞ; yðxkÞ; k ¼ 1 2 N

� �
s:t wi � 0;

XM
i¼1

wi ¼ 1

8>>>><>>>>: ð3:7Þ

where M is the number of surrogate models, N is the number of samples, ee is the
global error of the EM, and Err �f g is the error metric that is utilized to measure the
overall accuracy of the EM. yðxkÞ is the true response for sample xk and
ŷeðwi; ŷiðxkÞÞ is the response predicted by the i-th individual surrogate model,
which is constructed based on all samples except xk .

If the GMSE is selected as the error metric, the global error ee can be determined
as follows:

ee ¼ GMSEV ¼ 1
N

XN
k¼1

½ŷeðwi; ŷiðxvkÞÞ � yðxvkÞ�2 ð3:8Þ

where N is the number of validation points, xvi is the i-th input variable and v is the
number of points in the validation test set. Similarly, if the root mean square error
(RMSE) is selected as the error metric, the weights are evaluated by minimizing the
error at a set of verification points. In this case, the definition of ee is as follows:

ee ¼ RMSEV ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

½yðxvkÞ � ŷeðw; xvkÞ�2
vuut ð3:9Þ

When the RMSE is used, the accuracy of the constructed EM is highly influ-
enced by the value of N, and the optimal value of N depends on the characteristics
of the problem.

The calculation process for Eq. (3.7) is generally independent of the selected
global error metric. For example, other global error metrics can be used, such as the
correlation coefficient between the predicted and actual responses, the multiple
determination coefficient (R2), its adjusted value (R2

adj), the mean absolute error or
the maximum absolute error. However, it is important to note that the accuracy of
the resulting EM depends on the error metric used.
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3.1.2 Optimal Weighted Ensemble of Surrogates (OWS)

Bishop (1995) used the covariance matrix of the residuals as the basis for a
weighting scheme and proposed a weight coefficient calculation method called the
optimal weighted ensemble of surrogates (OWS) method to combine different
neural networks. In the OWS method, the EM is constructed by minimizing the
mean square error (MSE) value over the design space, which can be expressed as

min :MSEWAS

¼ 1
V

Z
V

e2WASðxÞdx

¼ wTCw

ð3:10Þ

Here, eWASðxÞ ¼ yðxÞ � ŷWASðxÞ is the error between the true response and the
response predicted by the OWS model, w ¼ ½w1;w2; . . .;wM �T is the weight matrix
for the M individual surrogate models, C is a matrix of the correlations between the
prediction residuals of different surrogate models and the elements of the matrix C
can be approximated as follows:

cij¼ 1
V

Z
V

eiðxÞejðxÞdx ð3:11Þ

where eið�Þ and ejð�Þ are the prediction errors associated with the i-th and j-th
surrogate models, respectively.

In the actual model construction process, it is difficult to calculate the correlation
matrix C by integrating within the domain of interest; thus, the cross-validation
error vector ~e can be used to approximate the correlation matrix as follows:

cij ’ 1
N
~eTi � ~ej ð3:12Þ

where N is the number of training samples and i and j represent different surrogate
models.

The optimization problem in Eq. (3.10) can be converted into the following
form:

Min MSEWAS ¼ wTCw

s:t 1Tw ¼ 1
ð3:13Þ

By solving the above-constrained optimization problem using the Lagrangian
multiplier method, the weight vector can be calculated as follows:
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w ¼ C�11
1TC�11

ð3:14Þ

Matrix-based methods can reduce the computational cost of the optimization
process. However, the weight coefficients obtained by Eq. (3.14) may be negative
or greater than one because the approximation of the correlation matrix based on the
cross-validation error magnifies the actual error value. Even by adding the con-
straint 0�wi � 1 to Eq. (3.13), the poor error approximation performance of the
correlation matrix still cannot be completely overcome. The most fundamental
reason is that an accurate approximation of the matrix C is unrealistic in practice
due to the limited design cost. In the approximate correlation matrix C, the elements
on the main diagonal are generally more accurate than the non-diagonal elements.
Therefore, Viana et al. (2009) proposed the use of only the diagonal elements on the
matrix to calculate the weight coefficients, thereby effectively ensuring that the
weight coefficient values fall in the range of ½0; 1�:

w ¼ C�1
diag1

1TC�1
diag1

ð3:15Þ

3.1.3 Optimal Average Weight Method Based on Recursive
Arithmetic Averaging

Since many intermediate surrogate models need to be built during the calculation of
the cross-validation error, the computational cost is relatively high. When a crite-
rion based on the smallest prediction error (RMSE or MSE) is applied, additional
validation points are needed, but each surrogate model needs to be constructed only
once; therefore, this approach is relatively efficient in terms of time. Zhou et al.
(2011) proposed a recursive algorithm for minimizing the predicted RMSE to
obtain the optimal weights. The basic framework of this method is as follows:

Input: Initial weight factors.
Step 1: Fit the training sample points fðxj; yjÞg; j ¼ 1; 2; . . .; T , with N alterna-

tive models (where T is the number of training sample points).
Step 2: Calculate the predicted MSE of each candidate model at the test points,

ei ¼ 1
T

XT
j¼1

ðSurij � dSurijÞ2; i ¼ 1; 2; . . .N ð3:16Þ

where Surij and dSurij are the true value and value predicted by the i-th candidate
model, respectively, at the j-th test point.

Step 3: Find the worst individual surrogate model (the single surrogate model
with the largest prediction error, denoted by Surworst, whose corresponding
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prediction MSE is denoted by MSEWorstSur) and the best individual surrogate model
(the single surrogate model with the smallest prediction error, denoted by Surbest,
whose corresponding prediction MSE is denoted by MSEBestSur).

While: (MSEWorstSur �MSEBestSur [ tol )
Step 4: Perform arithmetic averaging on the N candidate models to obtain the

constructed EM, denoted by Surave.
Step 5: Replace the surrogate model with the largest MSE with the EM Surave

obtained in Step 4. Thus, N new surrogate models are obtained, N � 1 of which are
unchanged. Recalculate and update the weights of the initial N individual surrogate
models.

Step 6: Similar to Step 3, find the worst and best models among the newly
obtained N models. If the termination condition is met, return to Step 4; otherwise,
exit the loop.

End while
Output: Optimal weights.
The entire iterative process is repeated until the predicted MSE does not sig-

nificantly improve, within a predetermined tolerance threshold tol (such as
tol ¼ 0:01).

Consider an EM consisting of N individual surrogate models Sur1; Sur2. . .SurN ,
each of which has a weight of wi, where the weights satisfy

PN
i¼1 wi ¼ 1. Let the

predicted response and prediction error of the i-th surrogate model Suri for the j-th

data point be dSurij and eij, respectively, for j ¼ 1; 2; . . .; T (where T is the number
of training points). Then, the predicted response and corresponding error of the EM

for the j-th data point are SuraveðjÞ ¼
PN

i¼1 wi dSurij and eaveðjÞ ¼
PN

i¼1 wieij,
respectively. Let W ¼ ½w1;w2. . .wN �T be the weight vector, let Ei ¼
½ei1; ei2; . . .eiT �T be the prediction error vector for the i-th model Suri and let e ¼
½E1;E2; . . .;EN � be the prediction error matrix; then, the sum of the squared pre-
diction errors of the simple average surrogate model Surave, denoted by J, can be
expressed as

J ¼ WTEW ð3:17Þ

where E ¼ eTe ¼
E11 E12 � � � E1N

E21 E22 � � � E2N

..

. ..
. ..

. ..
.

EN1 EN2 � � � ENN

26664
37775 and Eij ¼ ET

i Ej ¼
PN
t¼1

eitejt.

Obviously, Eii is the sum of the squared prediction errors of the i-th individual
surrogate model Suri.

Compared with other methods of model combination, this method has the fol-
lowing characteristics:

(1) It can guarantee that the weights are within the interval ½0; 1� and avoid the case
in which the weights are greater than 1 or less than 0, as often occurs in the
OWS method.
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(2) It is relatively simple and efficient when there are a large number of individual
models available, since the increasing number of individual models leads to
more variables in the optimization problem of solving the weights, which may
slow the optimization process.

3.2 Pointwise Weighted Ensembles of Surrogate Models
(EMs)

3.2.1 Weight Coefficient Selection Based on Prediction
Variance

Zerpa et al. (2005) used the prediction variance for local error estimation and set the
weight of each individual surrogate model to be inversely proportional to the
pointwise prediction variance, which can be mathematically expressed as follows:

wiðxÞ ¼
1

ViðxÞPM
j¼1

1
VjðxÞ

ð3:18Þ

where ViðxÞ is the prediction variance of the i-th surrogate model at point x and M
is the number of surrogate models. Since the prediction variance is a function of x,
the weight of each surrogate model is also expressed as a function of x. The
prediction variance VjðxÞ of the j-th surrogate model is calculated as follows:

VjðxÞ ¼ 1
N � 1

XN
k¼1

½yðxkÞ � yjðxkÞ�2 ð3:19Þ

where x1; x2; . . .; xN are the N samples that are closest to the prediction point x.

3.2.2 Adaptive Hybrid Function (AHF)-Based Pointwise
Weighting Method

Zhang et al. (2012) proposed an adaptive hybrid approximation model constructed
based on an adaptive hybrid function (AHF). The AHF is used to formulate trust
regions based on the density of available sample points and adaptively combine the
features of different surrogate models. The weight of each contributing surrogate
model is represented as a function of the input domain based on the local precision
of that surrogate model. This approach takes advantage of each individual surrogate
model to capture global and local trends in complex functional relationships. Zhang
et al. (2013) also combined three types of surrogate models, namely, radial basis
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function (RBF), extended RBF (E-RBF) and Kriging models, with the AHF
approach and investigated the influence of the sample size and the dimensionality of
the design problem on the proposed method.

The construction of an EM via the AHF approach generally follows four steps:

1. Build the component surrogate models for the EM.
2. Determine the crowding-distance-based trust region, which is the boundary of

the predicted output value as a function of the input vector, over the input space.
3. Characterize the local accuracy of the estimated function values (using a kernel

function).
4. Form the EM based on the estimated weights.

Consider a set of training points D, which can be expressed as

D ¼
x11
x21

x12
x22

� � �
� � �

x1nd
x2nd

y1

y2

..

.

xnp1

..

.

xnp2

. .
.

� � �
..
.

xnpnd

..

.

ynp

0BBB@
1CCCA

where xij is the j-th component of the input vector for the i-th training point, yi is the
corresponding output, nd is the dimensionality of the input variables and np is the
number of training data points. The AHF-based model construction process pro-
posed in Zhang et al. (2012) is described in detail below.

Step 1: Construction of the individual surrogate models

Different kinds of component surrogate models (such as kriging, RBF and E-RBF
models) can be built based on the training set D.

Step 2: Determination of the crowding-distance-based trust region

Step 2.1: Determination of the basic model

The basic model is constructed using a smooth function with a given set of points D
to address the global accuracy of the overall surrogate model. In the cited reference,
the basic model was constructed using the quadratic response surface method
(QRSM), and the coefficients for the QRSM model were determined using the least
squares method. Of course, the basic model can also be flexibly generated using
other regression methods. The mathematical formula for the QRSM model can be
expressed as

~fqrsmðxÞ ¼ a0 þ
Xnd
i¼1

bixi þ
Xnd
i¼1

ciixi þ 2
Xnd�1

i¼1

Xnd
j[ i

cijxixj ð3:20Þ

where xi are the input parameters and the variables a0, bi and cij are the unknown
coefficients determined via the least squares method.
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Step 2.2: Generation of the trust region boundaries

In this step, a trust region is constructed based on the density of the sample points;
more specifically, this region is called the crowding-distance-based trust region
(CD-TR). A set of points is generated from the basic model, and the crowding
distance is evaluated for each point. The trust region boundaries can be adaptively
calculated based on the obtained crowding distances at the training points and the
predictions of the basic model. The basic model can be relaxed along either output
axis to obtain the trust region boundaries for the surrogate model.

The crowding distance is utilized to estimate the density of the training points
around any point in the basic model. A larger value of the crowding distance
indicates a lower sample density (i.e. there are fewer training points around that
point), and the accuracy of the surrogate model is expected to lie within the
boundary. Therefore, a relatively broad boundary is needed at a low-density point.
Based on the crowding distance values obtained at different points in the basic
model, the adaptive boundaries of the CD-TR are constructed. The crowding dis-
tance at the i-th point ðCDiÞ in the basic model is calculated as follows:

CDi ¼
Xnp
j¼1

x j � xi
�� ��2 ð3:21Þ

where np is the number of training points. A parameter qi is used to reflect the local
density at the i-th training point; this parameter is expressed as follows:

qi ¼ 1
CDi

ð3:22Þ

The parameters qi can be normalized to ai:

ai ¼ maxðqÞ � qi

maxðqÞ �minðqÞ ð3:23Þ

The adaptive distance di between the i-th point in the basic model and the
corresponding point on the boundary can be written as

di ¼ ð1þ aiÞ �max
j2D

~fqrsmðx jÞ � y j
�� �� ð3:24Þ

where D is the training data set. In Eq. (3.25), j denotes a training point and i
denotes a set of uniformly distributed points selected from the basic model.
Therefore, the formula for the adaptive distance can be divided into two parts as
given below:

(1) max
j2D

~fqrsmðx jÞ � y j
�� �� is a constant, which is used to ensure that all training points

are located within the boundaries.
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(2) ai �max
j2D

~fqrsmðx jÞ � y j
�� �� is the adaptive distance, whose value changes with

different distance coefficients ai.

The crowding distance is evaluated for each selected point based on a previously
formulated a. The range of the boundary region is normalized with respect to the
maximum deviation of the training data from the basic model. Here, ~fqrsmðx jÞ is the
output value predicted by the QRSM at the j-th training point and ~fqrsmðx jÞ � y j

�� �� is
the distance between the prediction for the j-th training point and the basic model.
Thus, two sets of points, DU and DL, are obtained to construct the two boundaries,
as follows:

DU ¼

x11
x21

x12
x22

� � �
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x1nd
x2nd

y1 þ d1

y2 þ d2
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DL ¼
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The upper and lower boundaries are estimated via the QRSM using the gener-

ated data points DU and DL, respectively. The boundaries of the trust region can be
constructed using the QRSM and the two data sets DU and DL, and the probability
associated with each individual surrogate model can be calculated based on the trust
region boundaries.

Step 3: Estimation of measurement accuracy

To represent the uncertainty of the predicted responses, a metric called the accuracy
measure of surrogate modelling is adopted. A kernel function, which is written as a
function of the output parameters, is used to model the uncertainty of the predicted
function values at a certain point in the input variable domain. The coefficients in
the kernel function can be expressed as functions of the input variables, charac-
terizing the accuracy measure of surrogate modelling over the entire input domain.

The kernel function used to calculate the accuracy measure of surrogate mod-
elling must have the following properties:

(1) The maximum value of the kernel function must be one, which corresponds to
the actual output.

(2) The value of the kernel function must be equal to the small specified tolerance
at the upper and lower boundaries of the trust region.
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(3) The function must increase monotonically from any boundary to the actual
output value.

(4) The function must be continuous.

Zhang et al. (2013) suggested the following kernel function for use in calculating
the accuracy metric:

PðzÞ ¼ a exp �ðz� uÞ2
2r2

" #
ð3:25Þ

where the value of the amplitude coefficient a is specified as 1 and u and r represent
the mean value and standard deviation, respectively, of the kernel function. Other
kernel functions with similar properties can also be used for this purpose.

The distances between the two boundaries and the output values f iLðxiÞ and f iUðxiÞ
at each training data point xi are normalized. Thus, the maximum value of the
estimated accuracy metric (kernel function) is 1, corresponding to the actual output
value yðxiÞ, and the minimum value is 0.1, corresponding to the boundaries (within
the trust region). With this convention, the true response at a particular training
point does not necessarily lie in the middle of the two boundaries. To ensure that the
kernel function is continuous, it is divided into two parts with the same mean but
different standard deviations. The kernel function can then be represented as
follows:

PðxiÞ ¼
a exp � ½yðxiÞ � lðxiÞ�2

2r21ðxiÞ

( )
0 � yðXiÞ\ lðXiÞ

a exp � ½yðxiÞ � lðxiÞ�2
2r22ðxiÞ

( )
lðXiÞ � yðXiÞ � 1

8>>>>><>>>>>:
ð3:26Þ

The parameters r1 and r2 are controlled with respect to one-tenth of the required
maximum width (Dx10) and are calculated as follows:

r1ðxiÞ ¼ Dz10 xið Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 In10

p ¼ 2½lðxiÞ � f iLðxiÞ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 In10

p ¼ lðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2 In10

p ð3:27Þ

r2ðxiÞ ¼ Dz10 xið Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 In10

p ¼ 2½f iUðxiÞ � lðxiÞ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 In10

p ¼ 1� lðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2 In10

p ð3:28Þ

where

Pðl	 0:5Dz10Þ ¼ 1
10

ð3:29Þ
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By using Eq. (3.26), the precision coefficient lðxiÞ can be calculated for the i-th
training point and the coefficient l is expressed in terms of a polynomial response
surface related to the input variable xij.

Step 4: Combination of individual surrogate models

The AHF-based surrogate model is constructed by adaptively calculating the
weights of three component surrogate models (RBF, E-RBF and kriging models).
The AHF model is the weighted sum of the component surrogate models as
follows:

~fAHF ¼
Xns
i¼1

wi~fiðxÞ ð3:30Þ

Here, ns is the number of component surrogate models, ~fiðxÞ represents the
prediction response of the i-th surrogate model and the weights wi are calculated in
accordance with the estimated measure of accuracy as follows:

wiðxÞ ¼ PiðxÞPns
i¼1 PiðxÞ ð3:31Þ

where PiðxÞ is the estimated measure of accuracy for the i-th surrogate model at
point x.

3.2.3 Pointwise Weighted EM Using v Nearest Points
Cross-Validation

Lee and Choi (2014) proposed a method for determining the weights at unknown
points by using the cross-validation errors at v known sample points. The EM is
constructed using the weighted sum formula of one of the other methods described
above. The weight coefficients can be calculated as follows:

wiðxÞ ¼
1

vCViðxÞPM
j¼1

1
vCVjðxÞ

ð3:32Þ

where

vCViðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v

Xv

k¼1

ŷiðxÞ � ŷð�kÞ
i ðxÞ

n o2
s

ð3:33Þ

The error defined in Eq. (3.33) is called the v-nearest-point cross-validation error
(vCV ). From the formula for vCV , it can be seen that the calculation of vCV
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requires the surrogate model to be reconstructed only v times, while the calculation
of the GMSE requires nexp reconstructions. Thus, the computational cost of vCV is
lower than that of the GMSE, and this efficiency improvement will become more
obvious as nexp increases. In addition, vCV is a local error and is expressed as a
function of x, while the GMSE is an average error and yields a weight for each
component surrogate model that remains the same over the entire design space.

In interpolation methods, such as the Kriging and RBF methods, surrogate
models are constructed by interpolating from the sample points; thus, the predicted
responses are equal to the true responses at the training points. For models con-
structed using regression methods, such as Poisson regression (PR) and support
vector regression (SVR), there are generally some discrepancies between the pre-
dicted and true responses at the training points. If both interpolation and regression
models are used as the component models in Eq. (3.32), the resulting EM will tend
not to yield very accurate predictions due to the influence of the regression model(s).
To more reasonably integrate predictions from interpolation models and regression
models, a modified v-nearest-point cross-validation error (vCV ) can be used as given
below:

vCV�
i ðxÞ ¼

aðxÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v

Xv

k¼1

ŷiðxÞ � ŷð�kÞ
i ðxÞ

n o2
s

; for interpolation modelsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v

Xv

k¼1

ŷiðxÞ � ŷð�kÞ
i ðxÞ

n o2
s

; for regression models

8>>>>><>>>>>:
ð3:34Þ

For interpolation models, a control function aðxÞ is introduced.
To create an interpolated EM, the control function aðxÞ must satisfy the fol-

lowing requirements:

lim
d1ðxÞ!0

aðxÞ ¼ 0; lim
d1ðxÞ!d2ðxÞ

aðxÞ ¼ 1; ð3:35Þ

where d1ðxÞ is the distance between x and the training point that is the closest to x
and d2ðxÞ is the distance between x and the second closest training point to x. Lee
and Choi (2014) suggested using the following third-order polynomial as the
control function:

aðxÞ ¼ 3
d1ðxÞ
d2ðxÞ

� �2

�2
d1ðxÞ
d2ðxÞ

� �3

ð3:36Þ

The pointwise weights of each component model that are obtained using the
improved v-nearest-point cross-validation error (vCV�) can be calculated as
follows:
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wiðxÞ ¼
1

vCV�
i ðxÞPM

j¼1
1

vCV�
j ðxÞ

ð3:37Þ

3.2.4 Optimal Weighted Pointwise Ensemble (OWPE)
Method

To avoid the selection of basis functions for RBF models and generate improved
predictions, Liu et al. (2016) proposed the optimal weighted pointwise ensemble
(OWPE) method for the construction of an EM. Compared with other existing
ensemble methods, the main differences of the OWPE method are as follows:

(1) For the weights at the sample points, the 0–1 weight strategy is utilized, which
can emphasize the local accurate prediction accuracy of stand-alone RBF
model.

(2) For the weights at unobserver points, pointwise weights are calculated by
solving an optimization problem minimizing GMSE, which can adopt the
characteristics of stand-alone RBF models.

The flowchart of the OWPE method is shown in Fig. 3.1, and the details of the
procedures are given below.

Step 1: Construct k different RBF models

Using the same sample set, build k different RBF models with different basis
functions.

Step 2: Determine the weights at the observed points

Suppose that for a given function f , k RBF models can be constructed with different
basis functions. If cross-validation errors are used to represent the local errors of the
RBF models, the error of the j-th RBF model f̂j at sample point x can be expressed as

�e ji ¼ Ge ji ; i ¼ 1; 2; . . .m; j ¼ 1; 2; . . .; k ð3:38Þ

where Gj ¼ GMSEj

max
i¼1;2;...;k

fGMSEig, which represents the normalized global error of f̂j. A small

value of Gj indicates that the RBF model has good global accuracy. �e ji is the
cross-validation error of f̂j at point xi. A small value of �e ji indicates that the RBF
model has good local performance.

If the �e ji value of f̂j is the smallest among all component RBF models, then f̂j is
considered to have the highest prediction accuracy near point xi. To take full
advantage of the high-precision predictions of this model in this region, a 0–1
weighting strategy is used, i.e. the weight wij of f̂j at point xi is set to 1 and the
weights of the remaining component RBF models at point xi are set to zero.
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The above procedure is repeated to obtain a set of weights Wj ¼
fw1j;w2j; . . .;wmjgT for each f̂j at all sample points, all elements of which are either
0 or 1. These weights are called observation weights.

Step 3: Determine the weights at unobserved points

Step 3.1: Construct general pointwise weight functions.

The weights at the observed sample points obtained in the last step can be used to
predict the weights at unobserved points. For the j-th RBF model f̂j, its weight wjðxÞ
at any unobserved point x can be expressed using a weighted formula of inverse
ratios of distance:

xjðxÞ ¼
Xm
i¼1

xi
jðxÞ ¼

Xm
i¼1

d�hi
i WijP
d�hi
i

; x 6¼ xi; j ¼ 1; 2; . . .; k ð3:39Þ

where xi
jðxÞ is the i-th element of xjðxÞ and reflects how much the observation

weight Wij contributes to the weight xjðxÞ at an unobserved point. A larger value of
xi

jðxÞ indicates that xjðxÞ is closer to Wij. di ¼ x� xik k is the Euclidean distance
between the observed point xi and the unobserved point x and the index hi is a

Fig. 3.1 Flowchart of the
OWPE method
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coefficient that influences the attenuation rate of wij. The value of xi
jðxÞ decreases

with increasing di, and a larger value of hi leads to a slower decrease.
Equation (3.39) shows that the weight xjðxÞ depends on the weights at all sample
points.

If Wij ¼ 1, this means that f̂j has the highest prediction accuracy near the point

xi. In this case, xi
jðxÞ ¼ d�hi

iP
d�hi
i

in Eq. (3.39). Conversely, if Wij ¼ 0, then

xi
jðxÞ ¼ 0, and the weight at this sample point has no effect on xjðxÞ. Therefore, an

observation weight of 1 can be regarded as an active observation weight; con-
versely, a weight of 0 is called a frozen observation weight. Due to the 0–1
weighting strategy, one and only one model among the component RBF models
will provide an active observation weight at point xi.

Step 3.2: Find hopt to form optimal pointwise weight functions.

The parameter hi describes the attenuation rate of the active observation weight Wij;
in other words, the value of hi determines the domain of influence of observation
weight Wij. Since the active observation weights at the m known points may belong
to different RBF models, the value of the parameter hi should be determined
individually for each corresponding RBF model and thus can be defined as follows:

hi ¼ Bih ð3:40Þ

where Bi is the value of the normalized global accuracy metric of the component
RBF model that has an active observation weight. If �fu is the active RBF model,

then Bi ¼ 1=GMSEu

max
j¼1;2;...;k

1=GMSEjf g. h is a constant attenuation factor in the EM and is scaled

as shown above for different component RBF models.
Finally, the pointwise weight function in the design space can be expressed as

follows:

xjðxÞ ¼
Xm
i¼1

d�Bih
i WijP
d�Bih
i

ðx 6¼ xiÞ

Wij ðx ¼ xiÞ

8><>: ; j ¼ 1; 2; . . .; k ð3:41Þ

The attenuation constant coefficient h has a great influence on the point-by-point
weight function and further affects the prediction accuracy of the ensemble of RBF
models. A smaller h value results in smaller ranges of influence of the observation
weights. In the extreme case of h ¼ 0, the pointwise ensemble degenerates to an
average ensemble. For realistic problems, the selection of the most appropriate h
value depends on the characteristics of the problem of interest. In the OWPE
method, the optimal attenuation constant hopt is obtained by solving an optimization
problem that minimizes the GMSE of the EM:
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Find hopt

to min GMSEe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

ðf ðxiÞ � f̂ ð�iÞ
e ðxi; hÞÞ2

s

where f̂ ð�iÞ
e ðxi; hÞ ¼

Xk
j¼1

xð�iÞ
j ðxi; hÞf̂ ð�iÞ

e ðxiÞ

ð3:42Þ

where f̂ ð�iÞ
e ðxi; hÞ is the predicted value at point xi that is obtained from the

ensemble of RBF models that is constructed based on all sample points except xi,

whereas xð�iÞ
j ðxi; hÞ is the predicted value at point xi that is obtained using the

weight equation that is constructed based on all existing points except xi. Once hopt
has been obtained, it can be substituted into Eq. (3.41).

Step 4: Combination of the RBF models

After solving for the optimal attenuation coefficient and calculating the optimal
pointwise weight for each component RBF model, the ensemble model can be
written as follows:

f̂eðxÞ ¼
Xk
j¼1

WjðxÞf̂jðxÞ ð3:43Þ

Two main tasks contribute to the modelling cost: calculating the GMSE metric
and solving the optimization problem. Each component RBF model needs to be
constructed m times to calculate the GMSE metric; consequently, the computational
cost may increase exponentially as the sample set becomes larger. To relieve the
computational burden, the calculation process can be implemented in a parallel

way. For the observation weight matrix xð�iÞ
j ðxi; hÞ in the optimization problem,

Liu et al. (2016) suggested reusing the observation weight matrix W in Step A by
simply deleting its i-th row. By adopting the above two methods, a near-optimal
EM can be obtained.
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Chapter 4
Multi-fidelity Surrogate Models

Simulation models are treated as black boxes that generate input–output corre-
spondences. Nevertheless, designers need to choose simulation models with
appropriate fidelities to obtain qualities of interest (QOIs) at affordable cost levels.
Generally, high-fidelity (HF) simulation models can provide more reliable and
accurate simulation results than low-fidelity (LF) models. Consider the example of
designing an airfoil, which is an aerodynamic component, the available simulation
models for obtaining aerodynamic coefficients may differ in terms of their resolu-
tions (e.g. coarse meshes versus refined meshes in finite element models), levels of
abstraction (e.g. two-dimensional models versus three-dimensional models) or
mathematical descriptions (e.g. the Euler non-cohesive equations versus the
Navier–Stokes viscous Newton equations). Relying entirely on HF models to obtain
QOIs for constructing a surrogate model is always time-consuming and may even
be computationally prohibitive. On the other hand, LF models are considerably less
computationally demanding. However, the QOIs obtained from LF models may
result in inaccurate surrogate models or even distorted ones.

A promising way to achieve a trade-off between prediction accuracy and com-
putational cost in modelling is to integrate the information from both HF and LF
simulations by constructing a multi-fidelity (MF) surrogate model (Viana et al.
2014; Chen et al. 2016; Zhou et al. 2017). MF modelling is based on the
assumption that in addition to an HF model that is sufficiently accurate but has a
high computational cost, an LF model is used that is less accurate but also con-
siderably less computationally demanding (Viana et al. 2014). The three main
approaches for constructing MF models are scaling-function-based MF modelling,
space mapping and co. These approaches are summarized as follows:

(1) Scaling-function-based MF modelling

Scaling-function-based MF modelling approaches can be divided into three distinct
types. First, in the multiplicative scaling approach, a scaling function is constructed
to represent the ratio between the HF and LF models (Burgee et al. 1996; Liu and
Collette 2014). Second, in the additive scaling approach, a scaling function is
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constructed to capture the differences between the HF and LF models (Viana et al.
2009; Sun et al. 2012; Zhou et al. 2015, 2016b). Finally, in the hybrid scaling
approach, scaling functions are constructed to utilize the advantages of both the
multiplicative and additive scaling approaches (Gano et al. 2005; Zheng et al. 2013;
Tyan et al. 2015). It is important to note that the multiplicative scaling approach
may become invalid when the values of the LF model are equal to zero at some
sample points. This property, to some extent, limits the ability to use this approach
to solve constrained design optimization problems because finding an optimum
generally requires some constraints to be active.

(2) Space mapping (SM)

The key idea behind SM approaches is to construct an MF surrogate model by
mapping the HF model’s parameter space to the LF model’s parameter space or
mapping the output space of the LF model to that of the HF model. An obvious
advantage of SM is that it allows the design parameter vectors of the LF and HF
models to have different dimensions (Bandler et al. 2004; Rayas-Sanchez 2016).

(3) Co-kriging

Co-kriging was originally developed in the geostatistics community (Journel and
Huijbregts 1978) and was then extended to the integration of computational models
with different fidelity levels by Kennedy and O’Hagan (2000). In Kennedy and
O’Hagan’s approach (Journel and Huijbregts 1978), a Gaussian process (GP) model
was adopted to approximate the HF response as the sum of a scaled LF response
and a discrepancy function. Many variations of co-kriging methods are gaining
popularity today, such as the incorporation of gradient information in co-kriging
(Journel and Huijbregts 1978), the design of a nested sampling approach for
co-kriging (Xiong et al. 2013), the combination of co-kriging methods with
expected improvement (EI) functions in sequential optimization design (Huang
et al. 2006; Forrester et al. 2007) and parameter simplification during the solution
process for co-kriging (Zimmermann and Han 2010; Han et al. 2012; Le Gratiet and
Garnier 2014; Hu et al. 2017).

In the remainder of this chapter, a detailed introduction to these three MF
modelling approaches will be provided.

4.1 Scaling-Function-Based Approaches

4.1.1 Multiplicative Scaling Approach

The multiplicative scaling approach was first proposed by Haftka (Haftka 1991;
Gano et al. 2005). In this approach, a scaling factor is adopted to represent the ratio
between the HF and LF models at the HF sample points. Then, a scaling function is
constructed to fit the relationships between the design variables and the
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corresponding output. The MF surrogate model f̂MFðxÞ can be obtained using the
following equation:

f̂MFðxÞ ¼ f̂lðxÞ � b̂ðxÞ ð4:1Þ

where f̂lðxÞ is the LF model and b̂ðxÞ is the scaling function.

Based on the LF sample points xl ¼ xl;1; xl;2; . . .; xl;ml

n o
and the corresponding

responses f l ¼ fl;1; fl;2; . . .; fl;ml

n o
, the LF surrogate model f̂ l xð Þ can be constructed

(Ollar et al. 2017). Then, for the given HF sample points xh ¼
xh;1; xh;2; . . .; xh;mh

n o
and the corresponding responses f h ¼ fh;1; fh;2; . . .; fh;mh

� �
,

the scaling factors b xhð Þ ¼ bðxh;1Þ; bðxh;2Þ; . . .; bðxh;mh
Þ

n o
between the HF and LF

models at the locations xh; i can be calculated as follows:

bðxh; iÞ ¼
f hðxh; iÞ
f̂ lðxh; iÞ

ð4:2Þ

Based on xh and b xhð Þ, the scaling function b̂ xhð Þ can be constructed using a
modelling technique.

A one-dimensional (1D) numerical function will be used here to demonstrate the
process of constructing an MF surrogate model with multiplicative scaling. The
mathematical expressions for the 1D function are given in Eq. (4.3), and the
function is visualized in Fig. 4.1.

yh ¼ 0:5 sinð4p sinðxþ 0:5ÞÞþ ðxþ 0:5Þ2
3

yl ¼ 0:5 sinð4p sinð1:1xþ 0:4ÞÞþ ð1:1xþ 0:5Þ2
3

� 0:2

x 2 ½0; 1�:

ð4:3Þ

Fig. 4.1 HF and LF models
of the 1D numerical function
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Eleven LF sample points xl ¼ f0; 0:1; 0:2; 0:3 ; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0g
and six HF sample points xh ¼ f0; 0:2; 0:4; 0:6; 0:8; 1:0g are selected for con-
structing the MF surrogate model. First, the LF model is evaluated at the points in xl
to obtain the LF responses; then, the LF surrogate model can be constructed using a
modelling technique to obtain, e.g. a kriging model. Subsequently, the scaling
factors can be obtained using Eq. (4.2), and the scaling function b̂ xhð Þ can be
constructed. The LF surrogate model and the multiplicative scaling function are
visualized in Fig. 4.2a. Based on the LF surrogate model and the scaling function,
the final MF surrogate model can be obtained in accordance with Eq. (4.1), as
shown in Fig. 4.2b.

4.1.2 Additive Scaling Approach

Lewis et al. (Lewis and Nash 2000) developed the additive scaling approach for MF
modelling. In the additive scaling approach, the scaling factors are defined as the
differences between the HF and LF models at the HF sample points. Once the
scaling factors are obtained, they are fitted using the scaling function to map the
differences between the HF and LF models. The MF surrogate model f̂MF xð Þ can be
expressed as

f̂MF xð Þ ¼ f̂ l xð Þþ Ĉ xð Þ ð4:4Þ

Here, f̂ l xð Þ represents the LF model and is constructed using a modelling

technique based on the LF sample points xl ¼ xl;1; xl;2; . . .; xl;ml

n o
and the corre-

sponding responses f l ¼ fl;1; fl;2; . . .; fl;ml

n o
, and Ĉ xð Þ is the scaling function.

Fig. 4.2 a The LF surrogate model and the multiplicative scaling function and b the MF surrogate
model with multiplicative scaling for the 1D function
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Based on the HF sample points xh ¼ xh;1; xh;2; . . .; xh;mh

n o
and the corresponding

responses f h ¼ fh;1; fh;2; . . .; fh;mh

n o
, the differences C xhð Þ ¼

cðxh;1Þ; cðxh;2Þ; . . .; cðxh;mh
Þ

n o
between the HF and LF surrogate models at the

locations xh; i can be calculated as

Cðxh; iÞ ¼ fhðxh; iÞ � f̂lðxh; iÞ ð4:5Þ

Then, the scaling function can be approximated using a modelling technique
based on xh and C xhð Þ. The 1D numerical function expressed in Eq. (4.3) will again
be used to demonstrate the process of constructing an MF surrogate model with
additive scaling. Based on the LF sample points xl and the corresponding responses,
an LF surrogate model can be constructed, e.g. a kriging model. The differences
C xhð Þ can then be obtained in accordance with Eq. (4.5), and the scaling function
Ĉ xð Þ can be constructed. The LF surrogate model and the scaling function Ĉ xð Þ are
visualized in Fig. 4.2a. Based on the LF surrogate model and the scaling function,
the final MF surrogate model can be obtained using Eq. (4.4), as shown in Fig. 4.3b.

4.1.3 Hybrid Scaling Approach

Gano et al. (2005) proposed the hybrid scaling approach to make use of the
advantages of both the multiplicative scaling approach and the additive scaling
approach. The variable-fidelity surrogate model f̂MF xð Þ can be obtained using the
following equation:

Fig. 4.3 a The LF surrogate model and the additive scaling function and b the MF surrogate
model with additive scaling for the 1D function
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f̂MFðxÞ ¼ xðf̂ lðxÞb̂ðxÞÞþ ð1� xÞðf̂ lðxÞþ ĈðxÞÞ ð4:6Þ

where f̂ lðxÞb̂ðxÞ and f̂ lðxÞþ ĈðxÞ are the MF surrogate models with multiplicative
scaling and additive scaling, respectively and x denotes the weighting factor
reflecting the ratio between the contributions of these two different scaling
approaches. The value of x is often selected based on the knowledge and experi-
ence of the designers (Van Nguyen et al. 2015).

MF surrogate models with multiplicative scaling and additive scaling were
constructed for the same 1D numerical function in Sects. 4.1.1 and 4.1.2, respec-
tively. The corresponding MF surrogate model with hybrid scaling that is obtained
by setting x ¼ 0:5 is shown in Fig. 4.4.

4.1.4 Examples and Results

Four well-known numerical problems with different characteristics with regard to
variable-fidelity modelling (Huang et al. 2006; Zheng et al. 2014; Cheng et al.
2015; Zhou et al. 2016a) are utilized here to test the performance of the three
scaling-function-based MF modelling approaches introduced above. The expres-
sions for the corresponding mathematical functions are given as follows. In these
problems, yh denotes the HF model that needs to be approximated and yl denotes
the LF model. The features of the four numerical examples are listed in Table 4.1.

Problem 1 (P1)

yl ¼ðð0:5x1Þ2 þ 0:8x2 � 11Þ2 þðð0:8x2Þ2 þ 0:5x1 � 7Þ2 þ x32 � ðx1 þ 1Þ2

yh ¼ðx21 þ x2 � 11Þ2 þðx22 þ x1 � 7Þ2; x1; x2 2 ½�3; 3�
ð4:7Þ

Problem 2 (P2)

Fig. 4.4 MF surrogate model
with hybrid scaling for the 1D
function
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yl ¼ ðx1 � 1Þ2 þ 2� ð2x22 � 0:75x1Þ2 þ 3� ð3x23 � 0:75x2Þ2 þ 4� ð4x24 � 0:75x3Þ2

yh ¼ ðx1 � 1Þ2 þ 2� ð2x22 � x1Þ2 þ 3� ð3x23 � x2Þ2 þ 4� ð4x24 � x3Þ2
x1; x2; x3; x4 2 ½�10; 10�

ð4:8Þ

Problem 3 (P3)

fborehole ¼ 2px3ðx4 � x6Þ
lnðx2=x1Þ½1þ 2x7x4=ðlnðx2=x1Þx21x8Þþ x3=x5�

yl ¼ 0:4fboreholeðxÞþ 0:07x21x8 þ x1x7=x3 þ x1x6=x2 þ x21x4
yh ¼ fboreholeðxÞ
x1 2 ½0:05; 0:15�; x2 2 ½100; 50000�;
x3 ½63070; 115600�; x4 2 ½990; 1110�;
x5 2 ½63:1; 116�; x6 2 ½700; 820�;
x7 2 ½1120; 1680�; x8 2 ½9855; 12045�

ð4:9Þ

Problem 4 (P4)

yl ¼
X10
i¼1

x3i þð
X10
i¼1

2ixiÞ2 þð
X10
i¼1

3ixiÞ4

yh ¼
X10
i¼1

x2i þð
X10
i¼1

0:5ixiÞ2 þð
X10
i¼1

0:5ixiÞ4; �5� xi � 10

ð4:10Þ

Two surrogate model accuracy metrics are used in this section to compare the
different approaches, namely, the relative maximum absolute error (RMAE) and the
relative root mean square error (RRMSE), which are defined below:

Table 4.1 Features of the
numerical test problems

Problem number Problem scale Nonlinearity order

P1 Low (NV = 2) Low

P2 Low (NV = 4) High

P3 High (NV = 8) Low

P4 High (NV = 10) High
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RMAE ¼ 1
STD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðyi � ŷiÞ2
vuut

RRMSE =
1

STD
maxð yi � ŷij jÞ

STD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1

ðyi � �yÞ2
vuut

ð4:11Þ

where N is the total number of validation points, �y is the mean of the observed
values at the validation points, and yi and ŷi are the real response and the predicted
value, respectively, at the i-th validation point. The lower the value of the RMAE/
RRMSE is, the more accurate the MF surrogate model. The RRMSE is used to
gauge the overall accuracy of the model, while the RMAE is used to gauge the local
accuracy of the model. An additional 100 randomly selected sample points are used
to calculate the RMAE and RRMSE in this section.

To construct a variable-fidelity surrogate model, sample points at two levels (HF
and LF) should first be generated. Here, to ensure good uniformity of the samples
and flexibility of the sample size, the Latin hypercube sampling (LHS) method
(Huntington and Lyrintzis 1998) was chosen to generate the initial set of samples
within the design domain. The samples were obtained using the MATLAB 2013b
routine ‘lhsdesign’ with the ‘maximum’ criterion, which maximizes the minimum
distance between sample points.

Two circumstances are considered for the comparison of the different approa-
ches: large HF sample sets (NHF = 12d) and small HF sample sets (NHF = 5d). The
number of LF samples is 20d in both cases, where d is the dimensionality of the test
problem. The four numerical problems were tested 30 times for each of the different
approaches to account for the influence of randomness.

In Table 4.2, the best error metrics are marked in bold. For problems with
different features and different sizes, the three scaling-function-based approaches
show different performances. No approach is universally better than the other
approaches for all problems; therefore, it is important to choose the most suitable
approach based on the characteristics of the problem of interest.

4.2 Space Mapping (SM) Approaches

4.2.1 The Concept of Output-Output Space Mapping
(OOSM) Approaches

The goal of an output-output space mapping (OOSM) approach is to construct an
MF surrogate model by taking the LF output values as prior knowledge of the
studied system and directly mapping them to the output of the HF model.
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A schematic diagram is presented in Fig. 4.5 to illustrate the similarities and dif-
ferences between scaling-function-based MF approaches and the OOSM approach.

Table 4.2 Test results obtained for the numerical examples using different approaches

Sample size Examples Error metric Multiplicative
scaling
approach

Additive scaling
approach

Hybrid scaling
approach

Mean STD Mean STD Mean STD

Small size P1 RMAE 1.0515 0.3913 1.0753 0.2872 1.0076 0.3318

RRMSE 0.3778 0.1641 0.3797 0.1250 0.3555 0.1379

P2 RMAE 1.1576 0.9012 0.7042 0.3154 0.8790 0.4553

RRMSE 0.2976 0.2675 0.1734 0.0509 0.2142 0.1246

P3 RMAE 0.0140 0.0040 0.0205 0.0059 0.0171 0.0048

RRMSE 0.0032 0.0006 0.0048 0.0009 0.0039 0.0007

P4 RMAE 3.7392 8.2381 1293.34 291.48 646.67 145.64

RRMSE 0.6089 0.9223 436.85 77.3522 218.43 38.65

Large size P1 RMAE 0.4570 0.2058 0.2767 0.1543 0.3339 0.1729

RRMSE 0.0967 0.0437 0.0572 0.0342 0.0705 0.0355

P2 RMAE 2.2591 2.8564 0.5497 0.1776 1.2563 1.3664

RRMSE 0.5524 0.8175 0.1442 0.0309 0.3159 0.3985

P3 RMAE 0.0101 0.0046 0.0121 0.0052 0.0111 0.0049

RRMSE 0.0021 0.0004 0.0024 0.0005 0.0022 0.0004

P4 RMAE 3.7392 8.2381 1293.34 291.48 646.67 145.64

RRMSE 0.6089 0.9223 436.85 77.3522 218.43 38.6578

Fig. 4.5 Comparison between the OOSM approach and the scaling-function-based MF
approaches
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As seen from Fig. 4.5, both the scaling-function-based MF approaches and the
OOSM approach use the LF model to capture the overall trend of the characteristics
of the system. In scaling-function-based MF approaches, surrogate models for the
scaling function are constructed to learn the differences between the HF responses
and the predicted output values from the LF surrogate model. This is actually a
process of mapping a multidimensional space to a 1D space, which is expected to
yield a significantly higher prediction accuracy than can be obtained using the
single HF surrogate model with a small amount of HF data for problems in which
the relationship between the difference response features of the HF and LF models
and the design variables is simple (Zheng et al. 2014). By contrast, in the OOSM
approach, a surrogate model is constructed by mapping a 1D space (the output
space of the LF model) to another 1D space (the output space of the HF model).
Clearly, the OOSM approach will alleviate the computational burden of MF
modelling when the dimensionality of the design space is greater than one.

4.2.2 The Radial Basis Function (RBF)-Based OOSM
Approach

In this section, the formulation and derivation processes for the radial basis function
(RBF)-based OOSM approach are presented along with its framework. Figure 4.6
illustrates the framework of the RBF-based OOSM approach. Throughout this
section, we will review the key points involved in each step.

Step 1: Generate two sample sets, Xl and Xh

Since the LF model is able to reflect the most prominent features of the system at
a considerably reduced computational cost, a sample set Xl ¼ xl1; x

l
2; . . .; x

l
N

� �
with

a relatively large number of sample points is generated to ensure the accuracy of
this model. By contrast, a sample set Xh ¼ xh1; x

h
2; . . .; x

h
M

� �
with a significantly

smaller number of sample points is generated to obtain the response values of the
HF model. In this step, the optimal Latin hypercube sampling (OLHS) method (Jin
et al. 2005), which can ensure that the design space is uniformly covered, is applied
to generate the sample sets for the LF and HF models.

Step 2: Run the LF model on sample set Xl to obtain the LF response values
Based on the sample set Xl generated in Step 1, the actual LF response vector

f l ¼ f l1; f
l
2; . . .; f

l
N

� �
is obtained by running the LF model.

Step 3: Build an RBF surrogate model for the LF model
Based on the LF sampling data, an RBF surrogate model f̂ lðxÞ is built for the LF

model. Then, the value predicted by the LF model at any point x can be expressed as

f̂ lðxÞ ¼
XN
p¼1

wl
p/ð x� xlp

��� ���Þ ð4:12Þ
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where N is the number of sample points for the LF model, xlp is the p-th sample

point in Xl, x is the design variable in the design space and x� xlp
��� ��� represents the

Euclidean distance between the design variable and the p-th LF sample point and is
mathematically expressed as

x� xlp
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xlpÞTðx� xlpÞ

q
ð4:13Þ

/ð�Þ represents the RBFs. Commonly used RBFs are listed as follows (Zhou and
Jiang 2016):

(1) Bi-harmonic, / rð Þ ¼ r; (2) Thin-plate spline, / rð Þ ¼ r2 logðrÞ;
(3) Multi-quadric, / rð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p

; (4) Cubic, / rð Þ ¼ rþ cð Þ3;
(5) Gaussian, / rð Þ ¼ e� cr2ð Þ; (6) Inverse multi-quadric, / rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p ,

Fig. 4.6 Framework of the
RBF-based OOSM approach
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where c is a constant value and 0\c� 1.
The unknown interpolation vector wl is obtained by minimizing the sum of the

squares of the deviations, which can be expressed as

Jlf ¼
XN
s¼1

f ðxlsÞ �
XN
p¼1

wl
p/ð xls � xlpÞ

��� ���Þ
" #2

ð4:14Þ

By solving the above optimization problem, the coefficients wl can be obtained
as follows:

wl ¼ UT
l Ul þKl

� ��1
UT

l f
l ð4:15Þ

where the elements of Kl are all zero except for the regularization parameters along
the diagonal and Ul is the design matrix. Because of its advantages of relatively few
parameters to be set and excellent overall performance, the Gaussian form is
adopted for the RBFs. Then, the design matrix Ul can be obtained as follows:

Ul ¼

e�ðc� xl1�xl1k kÞ2 e�ðc� xl1�xl2k kÞ2 � � � e�ðc� xl1�xlNk kÞ2
e�ðc� xl2�xl1k kÞ2

..

.

e�ðc� xl2�xl2k kÞ2 � � �
..
. . .

.

e�ðc� xl2�xlNk kÞ2

..

.

e�ðc� xlN�xl1k kÞ2 e�ðc� xlN�xl2k kÞ2 � � � e�ðc� xlN�xlNk kÞ2

0
BBBBB@

1
CCCCCA ð4:16Þ

Step 4: Run the HF model on the sample set Xh to obtain the HF response values
Based on the sample set Xh generated in Step 1, the actual HF response vector

f h ¼ f h1 ; f
h
2 ; . . .; f

h
M

� �
is obtained by running the HF model.

Step 5: Build the MF surrogate model by taking the LF predicted values as prior
knowledge and directly mapping them to the output of the HF model.

By taking the constructed LF surrogate model f̂ lðxÞ as prior knowledge and
mapping its output space to that of the HF model, the formulation for the proposed
OOSM model can be specified as a linear combination of RBFs with weight
coefficients, as shown in the following equation:

f̂MFðxÞ ¼
XM
q¼1

wOSM
q /ðf̂ lðxÞ; f̂ lðxhqÞÞ

¼
XM
q¼1

wOSM
q /ð f̂ lðxÞ � f̂ lðxhqÞ

��� ���Þ
ð4:17Þ

Here, M is the number of sample points for the HF model. xhq is the q-th sample

point in Xh, f̂ lðxÞ is the predicted value at the design variable x as obtained from the
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LF surrogate model, which can be calculated using Eq. (4.12). Similarly, f̂ lðxhqÞ is
the value at xhq predicted by the LF surrogate model, which can be calculated as

f̂ lðxhqÞ ¼
XN
p¼1

wl
p/ð xhq � xlp

��� ���Þ ð4:18Þ

where xhq � xlp
��� ��� represents the Euclidean distance between the LF and HF sample

points, which can be expressed as

xhq � xlp
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxhq � xlpÞTðxhq � xlpÞ

q
ð4:19Þ

The unknown interpolation coefficient wOSM is obtained by minimizing the sum
of the squares of the deviations, which can be expressed as

JMF ¼
XM
k¼1

f hðxhkÞ �
XM
q¼1

wOSM
q /ð f̂ lðxhkÞ � f̂ lðxhqÞ

��� ���Þ
" #2

ð4:20Þ

When a weight penalty term is added to the sum of the squares of the deviations,
the cost function is minimized as follows:

CMF ¼
XM
k¼1

f hðxhkÞ �
XM
q¼1

wOSM
q /ð f̂ lðxhkÞ � f̂ lðxhqÞ

��� ���Þ
" #2

þ
XM
q¼1

kqðwOSM
q Þ2 ð4:21Þ

where k is a nonnegative regularization vector that is used to control the additional
weight penalty term.

To solve the above optimization problem to obtain the coefficients wOSM , the
partial derivatives of the cost function with respect to each wOSM

q are calculated. The
partial derivative with respect to the q-th coefficient can be expressed as

@Cvf

@wOSM
q

¼ 2
XM
k¼1

ðwOSM
q /ð f̂ lðxhkÞ � f̂ lðxhqÞ

��� ���Þ � f hðxhkÞÞ
@ðwOSM

q /ð f̂ lðxhkÞ � f̂ lðxhqÞ
��� ���ÞÞ
@wOSM

q
Þþ 2kqwOSM

q

¼ 2
XM
k¼1

ðwOSM
q /ð f̂ lðxhkÞ � f̂ lðxhqÞ

��� ���Þ � f hðxhkÞÞ/ð f̂ lðxhkÞ � f̂ lðxhqÞ
��� ���ÞÞþ 2kqwOSM

q

ð4:22Þ

Setting the above expression equal to zero leads to the following equation:
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XM
k¼1

ðwOSM
q /ð f̂ lðxhkÞ � f̂ lðxhqÞ

��� ���Þ/ð f̂ lðxhkÞ � f̂ lðxhqÞ
��� ���ÞÞþ kqw

OSM
q

¼
XM
k¼1

ðf hðxhkÞ/ð f̂ lðxhkÞ � f̂ lðxhqÞ
��� ���ÞÞ ð4:23Þ

There are M such equations, for 1� q�M, each representing one constraint on
the solution. When matrices and vectors are used, the problem for obtaining wOSM

can be rewritten as

UT
MFUMFw

OSM þKwOSM¼UT
MFf

h ð4:24Þ

where UMF is the design matrix. When the Gaussian form is adopted for the RBFs,
the design matrix UMF can be obtained as follows:

UMF ¼

e�ðc� f̂ lðxh1Þ�f̂ lðxh1Þk kÞ2 e�ðc� f̂ lðxh1Þ�f̂ lðxh2Þk kÞ2 � � � e�ðc� f̂ lðxh1Þ�f̂ lðxhMÞk kÞ2
e�ðc� f̂ lðxh2Þ�f̂ lðxh1Þk kÞ2

..

.

e�ðc� f̂ lðxh2Þ�f̂ lðxh2Þk kÞ2 � � �
..
. . .

.

e�ðc� f̂ lðxh2Þ�f̂ lðxhMÞk kÞ2

..

.

e�ðc� f̂ lðxhMÞ�f̂ lðxh1Þk kÞ2 e�ðc� f̂ lðxhMÞ�f̂ lðxh2Þk kÞ2 � � � e�ðc� f̂ lðxhMÞ�f̂ lðxhMÞk kÞ2

0
BBBBB@

1
CCCCCA

ð4:25Þ

The elements of K are all zero except for the regularization parameters along the
diagonal:

K ¼
k1 0 � � � 0
0 k2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � km

0
BBB@

1
CCCA ð4:26Þ

By solving Eq. (4.18), the coefficients wOSM can be obtained as follows:

wOSM ¼ UT
MFUMF þK

� ��1
UT

MFðf hÞT ð4:27Þ

Finally, by substituting Eqs. (4.12), (4.18) and (4.27) into Eq. (4.17), the pre-
dicted values at any design points as obtained from the proposed OOSM model can
be calculated as follows:

f̂MFðxÞ ¼
XM
q¼1

wOSM
q /ð

XN
p¼1

wl
p/ð x� xlp

��� ���Þ �XN
p¼1

wl
p/ð xhq � xlp

��� ���Þ
�����

�����Þ ð4:28Þ
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Step 6: Check the prediction accuracy of the obtained MF surrogate model
The prediction performance of the MF surrogate model created through the

above steps needs to be validated before it can be used in support of
simulation-based design. If the preselected prediction accuracy criterion is not
achieved, the process will return to Step 1; otherwise, it will proceed to Step 7.

Step 7: Output the final MF surrogate model
Once the preselected prediction accuracy of the obtained MF surrogate model

has been achieved, the algorithm will output the final MF surrogate model.
A numerical example adapted from Zhou et al. (2015) will be used here to

present a detailed comparison among different multi-fidelity modelling
(MFM) approaches. The mathematical description of the numerical example is
given below:

Modified six-hump camelback (MSC) function:

f ðx1; x2Þ ¼ 4x21 � 2:1x41 þ x61=3þ x1x2 � 4x22 þ 4x42;

f h ¼ f ðx1; x2Þ;
f l¼ f ð0:7x1; 0:7x1Þ;
x1 2 ½�2; 2�; x2 2 ½�2; 2�

ð4:29Þ

where f h denotes the HF model that is to be approximated and f l denotes the LF
model. Note that the analytical functions are used only to obtain the response values
at a given sample point. Although these analytical functions are explicit, the overall
relationships between the input variables and the corresponding LF and HF
responses, which are equivalent to the relationship between the HF and LF models,
are assumed to be unknown.

The OLHS method proposed by Jin et al. (2005) was used to generate sample
sets. Three different sample sizes for the HF model, labelled sample size 1
(M ¼ 2dþ 1), sample size 2 (M ¼ 3dþ 2) and sample size 3 (M ¼ 4dþ 3) in
Fig. 4.7, are considered, where d is the dimensionality of the design space.

To calculate the values of the two prediction accuracy metrics for the different
MFM approaches with different sample sizes, an additional 1024 test points were

(a) Sample size 1 (N=2d+1) (b) Sample size 2 (N=3d+2) (c) Sample size 3 (N=4d+3) 

Fig. 4.7 Three sample sets of different sizes generated via OLHS
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randomly selected. For each MFM approach, 10 different runs were performed for
the numerical example of the MSC function, and the average values of the two
prediction accuracy metrics across these runs are presented as the final results to
avoid unrepresentative numerical results. Figure 4.8a plots the actual HF and LF
models for the MSC function, and a contour map of their differences is presented in
Fig. 4.8b.

Figure 4.9 illustrates the MF surrogate model constructed by mapping the output
space of the LF model to the output space of the HF model, a 1D-to-1D mapping
process. Figure 4.9c illustrates the final MF surrogate model obtained using the
RBF-based OOSM approach. By comparing Fig. 4.9c with Fig. 4.8a, it can be
concluded that the MF surrogate model constructed with the proposed OOSM
approach is capable of describing the behaviour of the actual HF model with high
accuracy over the whole design domain.

(a) Actual HF model and LF model 
for MSC 

(b) Coutours of difference between 
HF and LF models for MSC 

Fig. 4.8 Plots of the actual HF and LF models for the MSC function

(a) The LF metamodel (b) Low-fidelity output space 
mapping process 

(c) MF metamodel obtained 
by OOSM method for MSC 

Fig. 4.9 Numerical illustration of the RBF-based OOSM approach
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4.2.3 The Gaussian Process-Based OOSM Approach

The aim of the SM-based MFM approach proposed in this section is to address the
limitations of scaling-function-based MFM approaches by treating the LF output
information as prior knowledge of the studied system and directly mapping it to the
output space of the HF model using a GP model. Based on the available LF and HF
information, as shown in Eqs. (4.30) and (4.31), the response at an unobserved
point x as predicted using the proposed GM-based OOSM approach can be
expressed as a realization of a regression model F and a stochastic process z,

fMFðxÞ¼Fðb; f̂ lðxÞÞþ zðf̂ lðxÞÞ ð4:30Þ

where f̂ lðxÞ denotes the response at x predicted by the LF surrogate model, which is
constructed using procedure used in the scaling-function-based MFM approaches.
Readers are referred to (Han and Görtz 2012; Zhou et al. 2016a) for the details of
building such an LF surrogate model.

Fðb; f̂ lðxÞÞ is a linear combination of p chosen functions:

Fðb; f̂ lðxÞÞ ¼ b1h1ðf̂ lðxÞÞþ b2h2ðf̂ lðxÞÞþ � � � bphpðf̂ lðxÞ
¼ h1ðf̂ lðxÞÞ; h2ðf̂ lðxÞÞ; . . .; hpðf̂ lðxÞ

� 	
b

¼ hðf̂ lðxÞÞTb
ð4:31Þ

where b denotes a column vector of regression coefficients and hðf̂ lðxÞÞ denotes a
row vector of regression functions. The proposed approach for selecting the optimal
regression function is described in Sect. 3.1.1.

The stochastic process z is assumed to have a mean of zero and a covariance
between zðf̂ lðxÞÞ and zðf̂ lðx0ÞÞ,

E zðf̂ lðxÞÞ; zðf̂ lðx0ÞÞ� 	 ¼ r2Rðh; f̂ lðxÞ; f̂ lðx0ÞÞ ð4:32Þ

where r is the process standard deviation determining the overall magnitude of the
variance and Rðh; f̂ lðxÞ; f̂ lðx0ÞÞ is the correlation model. In this work, the most
popular form of the correlation function, a Gaussian exponential function (Kleijnen
2017), is adopted:

Rðh; f̂ lðxÞ; f̂ lðx0ÞÞ ¼
Yd
d¼1

expð�hd f̂ lðxdÞ � f̂ lðx0dÞ


 

2Þ ð4:33Þ
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where d is the dimensionality of the design variable and the elements of h are the
roughness parameters. The solution method for h is described in Sect. 3.1.2.

It is assumed that the response of the MF surrogate model can be approximated
as a linear combination of the HF information:

f̂MFðf̂ lðxÞÞ ¼ cT f h ð4:34Þ

where c ¼ ½c1; . . .; cM � is a vector of weight coefficients associated with the avail-
able HF data.

For a set S ¼ f̂ lðxh1Þ; f̂ lðxh2Þ; . . .; f̂ lðxhMÞ
� 	

, the expandedM � p design matrix F is
defined as

F ¼ hðf̂ lðxh1ÞÞ; hðf̂ lðxh2ÞÞ; . . .; hðf̂ lðxhMÞÞ
� 	T ð4:35Þ

Furthermore, the matrix R of the stochastic process correlations between the z
values at different design points is defined as follows:

Rij ¼ Rðh; f̂ lðxhi Þ; f̂ lðxhj ÞÞ i; j ¼ 1; 2; . . .;M ð4:36Þ

For an unobserved point x, the vector of correlations between it and the z values
at the design points is defined as

rðf̂ lðxÞÞ ¼ Rðh; f̂ lðxh1Þ; f̂ lðxÞÞ ;Rðh; f̂ lðxh2Þ; f̂ lðxÞÞ ; . . .;Rðh; f̂ lðxhMÞ; f̂ lðxÞÞ
� 	T

ð4:37Þ

Then, the errors between the linear predictor f̂vf ðf̂ lðxÞÞ and fvf ðf̂ lðxÞÞ at an
unobserved point x can be calculated as follows:

f̂MFðf̂ lðxÞÞ � fMFðf̂ lðxÞÞ ¼ cT f h � ðhðf̂ lðxÞÞTbþ zÞ
¼ cTðFbþZÞ � ððhðf̂ lðxÞÞTbþ zÞ
¼ cTZ� zþðFTc� hðf̂ lðxÞÞÞTb

ð4:38Þ

where Z¼ z1; z2; . . .; zM½ � denotes the errors at the design points. To keep the pre-
dictor unbiased, it is required that

FTc� hðf̂ lðxÞÞ ¼ 0 ð4:39Þ

Under this condition, the mean square error (MSE) of the predictor in Eq. (4.38) is
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uðxÞ ¼E½ðf̂MFðf̂ lðxÞÞ � fMFðf̂ lðxÞÞÞ2�
¼E½ðcTZ � zÞ2�
¼E½z2 þ cTZZTc� 2cTZz�
¼ r2ð1þ cTRc� 2cTrÞ

ð4:40Þ

To minimize the MSE, a Lagrange multiplier k can be introduced, and the
Lagrangian function with respect to c is

Lðc; kÞ ¼ r2ð1þ cTRc� 2cTrÞ � kTðFTc� hðf̂ lðxÞÞÞ ð4:41Þ

The gradient of Eq. (4.41) with respect to c can be calculated as follows:

L0cðc; kÞ ¼ 2r2ðRc� rÞ � Fk ð4:42Þ

From the first-order necessary conditions for optimality, the following system of
equations can be obtained:

R F
FT 0

� �
c
~k

� �
¼ r

hðf̂ lðxÞÞ
� �

ð4:43Þ

where ~k is defined as ~k ¼ � k
2r2.

Then, solving Eq. (4.43) yields

~k ¼ ðFTR�1FÞ�1ðFTR�1r � hðf̂ lðxÞÞÞ
c ¼ R�1ðr � F~kÞ

ð4:44Þ

Because the matrix R is symmetric, upon substituting Eq. (4.44) into Eq. (4.34),
the predictor obtained via the proposed GP-based OOSM approach for any unob-
served point x is given by

f̂vf ðxÞ ¼ ðr � F~kÞTR�1f h

¼ rTR�1f h � ðFTR�1r � hðf̂ lðxÞÞÞTðFTR�1FÞ�1FTR�1f h
ð4:45Þ

To obtain the hyper-parameters h, b and r2, the maximum likelihood estimates
are calculated. The log-likelihood function is usually adopted for numerical pur-
poses (Kleijnen 2009):

Inðpðb; r2; hÞÞ ¼ �M
2
Inð2pÞ �M

2
Inðr2Þ � 1

2
Inð Rj j1=2Þ � 1

2r2
ðf h � FbÞTR�1

ðf h � FbÞT
ð4:46Þ
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To determine the maximum likelihood estimates of b and r2, the derivatives of
Eq. (4.46) with respect to b and r2 are set to zero. Thus, the maximum likelihood
estimates of b and r2 are found to be

b̂ ¼ ðFTR�1FÞ�1FTR�1f h ð4:47Þ

r̂2 ¼ 1
M

ðf h � Fb̂ÞTR�1ðf h � Fb̂Þ ð4:48Þ

The hyper-parameters h ¼ ðh1; . . .; hdÞ in Eq. (4.32) influence the attenuation
rate of the correlation function. Before maximizing Eq. (4.46), by substituting
Eq. (4.47) and Eq. (4.48) into it, the following expression is obtained:

max Inðpðb; r2; hÞÞ ¼ �M
2
Inð2pÞ �M

2
Inðr̂2Þ � 1

2
Inð Rj j1=2Þ �M

2
ð4:49Þ

To solve the maximum likelihood estimation problem expressed in Eq. (4.49),
the free MATLAB toolbox DACE can be adopted, which relies on a powerful
stochastic algorithm based on the Hooke and Jeeves method (Lophaven et al.
2002a). The maximum likelihood problem is difficult to solve because of three main
difficulties (Martin and Simpson 2005; Gano et al. 2006; Kleijnen 2008a): (a) the
multimodality of the log-likelihood function, (b) the long ridges in the
log-likelihood function and (c) the ill-conditioned correlation matrix. The first and
second issues can be addressed by adopting a global stochastic optimization
algorithm, for example, Martin and Simpson (2004) suggested the use of simulated
annealing (SA). However, such an algorithm is much more computationally
expensive than a gradient-based method. Therefore, the question of how to establish
a trade-off between the global and local solutions and the function call expense is
still worth studying. The last issue can be addressed by adding a small nugget effect
(e.g. 10−6) to the diagonal elements of the correlation matrix.

A numerical example adapted from Aute et al. (2013) will be used to illustrate
how the GP-based OOSM approach works. In this illustrative example,

f lðxÞ¼ sinðx1Þ cosðx2Þ;
f hðxÞ ¼1:5 sin2ð0:5x1Þ cos2ð0:5x1Þ cosðx2Þþ 3 sinðx1Þ cosðx2Þ � 0:5;

x1 2½�2; 2�; x2 2 ½�2; 2�
ð4:50Þ

where f hðxÞ denotes the HF model to be approximated, while f lðxÞ denotes the LF
model. These two functions are graphically shown in Fig. 4.10. Note that although
the analytical functions here are explicitly known, the general relationship between
the LF and HF models is assumed to be unknown.

In this example, the number of sample points for the LF model is fixed to
N ¼ 30d, where d denotes the dimensionality of the design space. Three different
sample sizes for the HF model, M ¼ 3d, M ¼ 5d and M ¼ 6d, are considered to

74 4 Multi-fidelity Surrogate Models



www.manaraa.com

study the prediction performance of different MFM approaches. In this work,
OLHS (Park 1994) was used to ensure that the sampled points were spread
throughout the design space. The generated sample points are plotted in Fig. 4.11.

Figure 4.12 illustrates the key steps of the GP-based OOSM approach for
obtaining the MF surrogate model. As observed in Fig. 4.12, the LF information is

(a) Low-fidelity model for the 
numerical function 

(b) High-fidelity model for the 
numerical function 

Fig. 4.10 Plots of the LF and HF models

Fig. 4.11 Sample sets with different HF sample sizes
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treated as an input and directly mapped to the output space of the HF model. This is
actually a 1D-to-1D mapping process. The final obtained MF surrogate model is
plotted in Fig. 4.12c. When the MF surrogate model in Fig. 4.12c is compared with
the actual HF function plotted in Fig. 4.11b, it can be seen that the surrogate model
constructed using the GP-based OOSM approach is able to accurately reflect the
characteristics of the actual HF model over the whole design domain.

4.2.4 The Support Vector Regression (SVR)-Based OOSM
Approach

In this section, a prior-knowledge least squares support vector regression
(PKI-LSSVR) approach is developed to avoid the limitations of the commonly used
difference mapping approach. The prior knowledge used here is the LF information,
which can be derived from explicit empirical formulas or coarse black-box simu-
lation models. Instead of mapping the differences between the LF and HF models,
the PKI-LSSVR approach attempts to map the prior knowledge (the LF outputs) to
the real HF outputs. The flowchart of PKI-LSSVR is illustrated in Fig. 4.13.

Consider a set of HF data {(xhi, yhi)}i=1,2,…,m, with inputs Xh = {xh1, xh2, …,
xhm} and outputs Yh = {yh1, yh2, …, yhm}, together with a much larger set of LF
sample data {(xli, yli)}i=1,2,…,n, where the inputs are Xl = {xl1, xl2, …, xln} and the
corresponding outputs are Yl = {yl1, yl2, …, yln}. The purpose of SVR is to find a
function that has the minimum prediction error for the training samples and the
smallest deviation from the actual targets. Here, the LF outputs are treated as the
inputs to LSSVR, and the relationship between the LF and HF outputs is then
constructed via PKI-LSSVR, as follows:

F̂ ¼ wTu ½XhYh
l �

� �þ b ð4:51Þ

where Yh
l denotes the LF outputs at the HF sample points, which can be obtained by

running the LF model fl(x) at Xh, that is, Yh
l ¼ flðXhÞ and uð�Þ denotes a set of

(a) The LF metamodel (b) Space mapping process (c) VF metamodel obtained 
by SM-VFM 

Fig. 4.12 Numerical illustration of the GP-based OOSM approach
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nonlinear transformations. Thus, the variable-fidelity surrogate model F̂ is con-
structed by mapping the LF outputs to the HF outputs.

To construct the PKI-LSSVR model, the following optimization problem should
be solved:

min
1
2
wTwþ 1

2
C
Xm
i¼1

e2i ð4:52Þ

s:t:ei ¼ yhi � wTu XhYh
l

� 	� �� b; i ¼ 1; 2; . . .;m ð4:53Þ

where m is the number of HF sample points.
The Lagrangian form of the above optimization problem can be expressed as

follows:

L ¼ 1
2
WTWþ 1

2
C
Xm
i¼1

e2i �
Xm
i¼1

ai WTu XhYh
l

� 	� �þ bþ ei � yhi
� � ð4:54Þ

According to the Karush–Kuhn–Tucker conditions, by differentiating the above
function with respect to the Lagrange multipliers and eliminating the variables w
and ei, the optimization problem can be transformed into a linear equation, as
shown in Eq. (4.55).

Fig. 4.13 Flowchart of the
proposed PKI-LSSVR
method
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0 eT

e KþC�1I

� �
b
a

� �
¼ 0

Yh

� �
ð4:55Þ

where K is an m�m matrix with elements Kij ¼ u XhiYh
li

� 	� �T
u XhjYh

lj

h i �
¼ k XhiYh

li

� 	
; XhjYh

lj

h i �
, with k XhiYh

li

� 	
; XhjYh

lj

h i �
being the kernel

function; eT ¼ 1; . . .; 1½ �1�m and a ¼ a1; a2; . . .; am½ �. Thus, the resulting approxi-
mate PKI-LSSVR model can be expressed as follows:

F̂ ¼
Xm
i¼1

aik XhiYh
li

� 	
; XhjYh

lj

h i �
þ b ð4:56Þ

where a and b are solutions to Eq. (4.55).
Various kernel functions are available, including linear, polynomial, sigmoid

and Gaussian kernels. Because of its advantages of relatively few parameters to set
and excellent overall performance, the Gaussian kernel function is an effective and
frequently used option (Keerthi and Lin 2003; Liao et al. 2011). This function is
expressed as follows:

k XhiYh
li

� 	
; XhjYh

lj

h i �
¼ exp �

XhiYh
li

� 	� XhjYh
lj

h i2
2r2

0
B@

1
CA ð4:57Þ

Consequently, there are two hyper-parameters, the regularization parameter C
and the kernel parameter r, which need to be appropriately chosen a priori in the
PKI-LSSVR model to improve its generalizability.

The selection of hyper-parameters plays an important role in the performance of
SVR. Finding the best combination of hyper-parameters is often a troublesome
problem due to the high nonlinearity of the model performance with respect to these
parameters. A popular approach for SVR tuning is to select the best choices among
a certain set of candidate parameters by means of evolutionary methods (dos Santos
et al. 2012), such as genetic algorithms (Wei and Zhang 2012), particle swarm
optimization (Gilan et al. 2012) or ant colony optimization (Niu et al. 2010).

4.3 Co-Kriging Approaches

4.3.1 Traditional Co-Kriging Approach

Suppose that the HF model is yh : Rm ! R and that the LF model is yl : Rm ! R.
The sample sets are
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Sl ¼ðxð1Þl ; . . .; xðnlÞl ÞT 2 R
nl�m

Sh ¼ðxð1Þh ; . . .; xðnhÞh ÞT 2 R
nh�m

ð4:58Þ

The corresponding responses are

yl ¼½ylðxð1Þl Þ; . . .; ylðxðnlÞl Þ�T 2 R
nl

yh ¼½yhðxð1Þh Þ; . . .; yhðxðnhÞh Þ�T 2 R
nh

ð4:59Þ

where nl and nh are the numbers of LF and HF sample points, respectively.
Generally, it is assumed that nl � nh.

Then, the formula for Kennedy and O’Hagan’s autoregressive model can be
represented as

ŷhðxÞ ¼ qŷlðxÞþ ŷdðxÞ ð4:60Þ

where ŷhðxÞ is the sum of two GP models, with q being a scaling factor. The hat
symbols indicate that the models are approximations and ŷdðxÞ represents a model
of the discrepancy between the HF and LF models.

The applied distance measure between two sample points i and j is

dðxðiÞ; xðjÞÞ ¼
Xm
k¼1

hkðxðiÞk � xðjÞk Þpk ð4:61Þ

where k is the number of dimensions, and hk and Pk are hyper-parameters tuned to
the data at hand. The correlation function between points xðiÞ and xðjÞ is expressed as

RðxðiÞ; xðjÞÞ ¼ exp½�dðxðiÞ; xðjÞÞ� ð4:62Þ

When the response at a new point x is needed, the correlation vector cðxÞ with
the new point is formed, which is given below:

cðxÞ ¼ qr2l Rlðxl; xÞ
q2r2l Rlðxh; xÞþ r2dRdðxh; xÞ

� �
ð4:63Þ

where r2 are the process variances, with the subscripts l and d indicating the
parameters that belong to the LF and discrepancy models, respectively.

The prediction ŷhðxÞ is calculated as follows:

ŷhðxÞ ¼ f ðxÞTb� þ cðxÞTC�1ðy� Fb�Þ ð4:64Þ

where F and f ðxÞ are regression models that rely on the existing sampling data and
the predicted points, respectively.
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y, b� and C can be expressed as

y¼ yl
yh

� �
; b� ¼ ðFTC�1FÞ�1FTK�1y; and C

¼ r2l Rlðxl; xlÞ qr2l Rlðxl; xhÞ
qr2l Rlðxl; xhÞ q2r2l Rlðxh; xhÞþ r2hRhðxh; xhÞ

� �
ð4:65Þ

The MSE of prediction is

uðxÞ ¼ c0 þ uTðFTC�1FÞ�1u� cTC�1c ð4:66Þ

where u ¼ FTC�1c� f and c0 ¼ q2r2l þ r2d .

4.3.2 Extended Co-Kriging Approaches

4.3.2.1 Hierarchical Kriging (HK) Approach

In this subsection, the hierarchical kriging (HK) method proposed by Han and
Görtz (2012) is reviewed. In HK, the LF model is used to capture the general trend
of the HF model, whereas the HF samples are used for calibration. The HK for-
mulation can be expressed as

yMFðxÞ ¼ ymðxÞþ ZðxÞ ð4:67Þ

where ymðxÞ¼ b0ŷlf ðxÞ is the global trend function. Here, ŷlf ðxÞ is the LF surrogate
model, which is built as a kriging surrogate model with the LF sample data. b0 is a
scaling factor indicating the influence of the LF model on the predictions of the HF
model. ZðxÞ is a stationary random process with zero mean and a covariance of

Cov½ZðxÞ; Zðx0Þ� ¼ r2Rðx; x0Þ ð4:68Þ

where r is the process standard deviation determining the overall magnitude of the
variance. Rðx; x0Þ ¼ Qm

k¼1 Rkðhk; xk � x0kÞ is the spatial correlation function, which
depends only on the Euclidean distance between two sites, x and x0. h ¼
ðh1; . . .; hmÞ is the unknown correlation vector to be determined. In this study, a
Gaussian correlation function is adopted, which is given below:

Rkðhk; xk � x0kÞ ¼ expð�hk xk � x0kð Þ2Þ ð4:69Þ

Generally, h is obtained using maximum likelihood estimation. The likelihood
function can be formulated as
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Lðb0; r2; hÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pr2Þn Rj j
p expð� 1

2
ðYh � b0FÞTR�1ðYh � b0FÞT

r2
Þ ð4:70Þ

where Yh are the actual responses at the HF sample points and F ¼
½ŷlf ðx1hÞ . . . f ðŷlf xnhÞ�T is the vector of the values predicted by the LF surrogate model
at the HF sample points xh ¼ ðx1h;. . .; xnhÞ. The corresponding maximum likelihood
estimates of the coefficient b0 and the process variances r2 are expressed as (Han
and Görtz 2012)

b0ðhÞ ¼ ðFTR�1FÞ�1FTR�1Yh ð4:71Þ

r2ðh;b0Þ ¼
1
n
ðYh � b0FÞTR�1ðYh � b0FÞ ð4:72Þ

where R :¼ ðRðxih; x j
hÞÞi;j 2 Rn�n is the correlation matrix and r :¼ ðRðxih; xÞÞi 2 Rn

is the correlation vector between an unobserved point x and the HF sample points.
Upon substituting Eqs. (4.71) and (4.72) into Eq. (4.70) and taking the loga-

rithm, the following expression remains to be maximized:

max/ðHÞ ¼ �n ln r2ðhÞ � ln RðhÞj j
s:t:H[ 0

ð4:73Þ

where H denotes the vector of h, which is a function of both r and R.
Finally, the HK predictor for unobserved points can be written as (Han and

Görtz 2012)

ymf ðxÞ ¼ b0ŷlf ðxÞþ rTðxÞR�1ðYh � b0FÞ ð4:74Þ

4.3.2.2 An Improved HK Approach

In HK, the scaling factor b0 is a constant, which indicates that the proportional
relation between the HF and LF models is the same throughout the whole design
space. However, in reality, the specific relationship between the HF and LF models
is unknown and may vary at different points. Therefore, using a constant to express
this relationship is not sufficiently accurate. Furthermore, b0 is calculated based
only on the initial sample points, which are highly correlated with the method used
to select them. In fact, when generating initial sample points, designers generally
attempt to ensure that their distribution will be as homogeneous as possible to cover
a wider area; consequently, however, the areas close to the global or local
maximum/minimum may not be covered, meaning that HK is unable to provide a
reasonable prediction in these areas. Based on these considerations, an improved
hierarchical kriging (IHK) model is proposed to address this problem.
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The IHK formulation can be represented as follows:

YðxÞ ¼ hðxÞŷlf ðxÞþ zðxÞ ð4:75Þ

Here, hðxÞ is a response surface model with the following expression:

hðxÞ ¼ b0 þ
Xn
i¼1

bixi þ
X

1� j� k� n

bjkxjxk ð4:76Þ

where n denotes the dimensionality of the design space; xi; xj; xk are different design
variables and bi; bjk are the coefficients in front of them. The other parameters are
the same as in HK. In IHK, the value of the global trend function hðxÞ varies with
the predictor and thus can express the relationship between the HF and LF functions
more specifically; consequently, IHK shows better global performance than HK
does. Below, the solution procedure for IHK will be demonstrated in a 2D case; the
same procedure is also applicable in higher dimensional cases.

Model solving

The IHK model has the following expression in the 2D case:

ŷðx1; x2Þ ¼ ðb1 þ b2x1 þ b3x2 þ b4x
2
1 þ b5x1x2 þ b6x

2
2Þŷlf ðx1; x2Þþ zðx1; x2Þ

ð4:77Þ

It can also be written as

yðxÞ ¼ f ðxÞTbþ zðxÞ ð4:78Þ

where

b ¼ ½b1 b2 . . .b6�

f ðxÞ ¼ ½f1 f2 f3 f4 f5 f6�
¼ ½ŷlf ðx1; x2Þ x1ŷlf ðx1; x2Þ x2ŷlf ðx1; x2Þ x21ŷlf ðx1; x2Þ x1x2ŷlf ðx1; x2Þ x22ŷlf ðx1; x2Þ�

Higher dimensional problems can also be written in the same form as that of
Eq. (4.77). The expression for IHK is similar to that for universal kriging; therefore,
the solution method for universal kriging can also be used here. Under the
assumption that the response of the HF model can be approximated as a linear
combination of the chosen HF data ys, the IHK predictor can be written as

ŷðxÞ ¼ wTys ð4:79Þ

where w ¼ ½wð1Þ; . . .;wðnÞ� is a vector of weight coefficients associated with the
sampled HF data. Then, by replacing ys ¼ ½yð1Þ; . . .; yðnÞ�T with random quantities
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Ys ¼ ½Y ð1Þ; . . .; Y ðnÞ�T , the error between the predicted and true responses can be
written as

ŷðxÞ � yðxÞ ¼wTY � yðxÞ
¼wTðFbþ ZÞ � ðf ðxÞTbþ zÞ
¼wTZ � zþðFTw� f ðxÞÞTb

ð4:80Þ

For the predictor to remain unbiased, it is necessary that FTw� f ðxÞ ¼ 0; thus,

FTwðxÞ ¼ f ðxÞ ð4:81Þ

Subject to the constraint given in Eq. (4.81), the MSE of the predictor expressed
in Eq. (4.79), which is to be minimized, is

uðxÞ ¼E½ðŷðxÞ � yðxÞÞ2�
¼E½ðwTZ � zÞ2�
¼ ½z2 þwTZZTw� 2wTZz�
¼ r2ð1 + wTRw� 2wTrÞ

ð4:82Þ

For the constrained problem, the Lagrange multiplier k can be introduced, and
the Lagrangian function for the problem of minimizing u with respect to x is

Lðw; kÞ ¼ r2ð1þwTRw� 2wTrÞ � kTðFTw� f Þ ð4:83Þ

The gradient of Eq. (4.83) with respect to w is

L0cðw; kÞ ¼ 2r2ðRw� rÞ � Fk ð4:84Þ

From the first-order necessary conditions for optimality, the following system of
equations can be obtained:

R F
FT 0

� �
w
~k

� �
¼ r

f

� �
ð4:85Þ

where

F ¼ ½f ðxð1ÞÞ . . . f ðxðnÞÞ�T ; ~k ¼ � k
2r2

R :¼ ðRðxðiÞ; xðjÞÞÞi;j 2 Rn�n; r :¼ ðRðxðiÞ; xÞÞi 2 Rn

The matrix w can be obtained by solving the above equations, and the solution to
Eq. (4.85) is as follows:
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~k ¼ðFTR�1FÞ�1ðFTR�1r � f Þ
w ¼R�1ðr � F~kÞ

ð4:86Þ

Hence, the IHK predictor at any unobserved x is found to be

ŷðxÞ ¼ f Tb� þ rTR�1ðY � Fb�Þ
¼ f ðxÞTb� þ rðxÞTc� ð4:87Þ

where b� ¼ ðFTR�1FÞ�1FTR�1Y is the coefficient of the scaling factor. Note that
for a fixed set of design data, the matrices b� and c� are fixed, and they can be
calculated as part of the model-fitting process in this method. For every new x, only
the vectors f ðxÞ and rðxÞ need to be computed, adding two simple products.
Because a kriging model is an interpolative Bayesian surrogate model, the MSE of
the model will be zero at all sample points. The expression for the MSE at an
unobserved point can be written as

uðxÞ ¼ r2½1þðFTR�1r � f ÞTðFTR�1FÞ�1ðFTR�1r � f Þ � rTR�1r� ð4:88Þ

Although the MSE estimation for IHK highly resembles that for HK, the matrix
f here is related not only to the response of the LF model but also to the location of
the predictor. Thus, the behaviour of the LF model is also explicitly tuned here, thus
permitting a better MSE estimation than in the HK case.

Correlation model

The correlation function must be calculated during the model-building stage, and it
often has the following form:

Rðx; x0Þ ¼
Ym
j¼1

Rjðh; xj � x0jÞ ð4:89Þ

where h ¼ ðh1; . . .; hmÞ 2 Rm are the hyper-parameters to be tuned and m denotes
the dimensionality of the design space. The most popular form of this correlation
function is a Gaussian exponential function, which can be calculated as follows:

Rkðhk; xk � x0kÞ ¼ expð�hk xk � x0k


 

pkÞ

Rðh; x; x0Þ ¼
Ym
k¼1

expð�hk xk � x0k


 

pk Þ; 1� pk � 2

ð4:90Þ

A cubic spline correlation function (Lophaven et al. 2002c) is also often used
because it is always second-order differentiable, which is an expected characteristic
when combined with gradient information. This function is given by
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Rkðhk; xk � x0kÞ ¼
1� 15n2k þ 30n3k for 0� nk � 0:2

1:25ð1� nkÞ3 for 0:2\nk\1;

0 for nk 	 1

8><
>:

where nk ¼hk xk � x0k


 



ð4:91Þ

Hyper-parameter tuning strategy

The h ¼ ðh1; . . .; hmÞ in Eq. (4.89) affect the attenuation rate of the correlation
function, with a larger h leading to a faster decrease. Generally, the unknown
parameters h are found using maximum likelihood estimation. The likelihood
function can be formulated as follows:

Lðb; r2; hÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pr2Þn Rj j

p expð� 1
2
ðY � Fb�ÞTR�1ðY � Fb�ÞT

r2
Þ ð4:92Þ

The corresponding maximum likelihood estimates of the coefficient b and the
process variances are

b� ¼ðFTR�1FÞ�1FTR�1Y

r2 ¼ 1
m
ðY � Fb�ÞTR�1ðY � Fb�Þ

ð4:93Þ

Upon substituting Eq. (4.93) into Eq. (4.92) and taking the logarithm, the fol-
lowing expression remains to be maximized:

max/ðHÞ ¼ �n ln r2ðhÞ � ln RðhÞj j
s:t:H[ 0

ð4:94Þ

where H denotes the vector of h and both r and R are functions ofH. Following the
method proposed in Lophaven et al. (2002b), this problem can be solved by using a
modified version of the direct search algorithm of Hooke and Jeeves.
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Chapter 5
Verification Methods for Surrogate
Models

A surrogate model built based on a limited number of sample points will inevitably
have large prediction uncertainty. Applying such imprecise surrogate models in
design and optimization may lead to misleading predictions or optimal solutions
located in unfeasible regions (Picheny 2009). Therefore, verifying the accuracy of a
surrogate model before using it can ensure the reliability of the design. The fol-
lowing steps are often used to verify the accuracy of a surrogate model:

Step 1: Predict the response ŷ at an unobserved point. This response is the output of
the surrogate model; sometimes, it can also be the outcome of a simulation model,
mathematical formula, etc.
Step 2: Obtain the true observation y at the unobserved point. The true response y is
usually the outcome of a simulation model or physical experiment.
Step 3: Compare the predicted response ŷ and the true observation y. The com-
parison between the two responses will reveal how close they are. Various error
methods can be used in this step, and the errors at different points can be considered
collectively to obtain an overall assessment of the model. Sometimes, qualitative
judgements can also be applied, such as graphic comparisons or hypothesis testing.

The applications of error metrics in the design optimization can be generally
classified into four cases (Acar 2015): (1) identifying regions with relatively high
uncertainty in the input domain to determine promising areas for model refinement;
(2) obtaining an overall assessment of the constructed surrogate model to be used
for prediction, uncertainty quantification or optimization; (3) for an ensemble of
surrogate models, determining the optimal weight factors for the individual sur-
rogate models; and (4) choosing the most appropriate model among the alternatives
when multiple surrogate models are available. In cases (1), (3) and (4), after the
application of error metrics for these three purposes, the general level of uncertainty
of the surrogate model should be known, but the metric values do not represent the
true error. That is, it is not necessary to evaluate the true fidelity of the surrogate
model compared with the high-fidelity (HF) simulation model or experimental
model, since evaluating the true error of a surrogate model is sometimes
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time-consuming and may require additional validation points. For example, in case
(1), only regions with relatively high uncertainty need to be detected with the error
metric, while in case (4), comparing the degree of uncertainty of one surrogate
model over the others among the alternatives is sufficient for the design task.
However, in case (2), in which the designers must decide whether to accept or reject
the constructed surrogate model, the overall accuracy of the surrogate model needs
to be known, and the metric value should be as close to the true error as possible
since the criterion for accepting a model is often set in reference to the true error.

There are many alternatives available when choosing an error metric to assess
the accuracy of a surrogate model, such as the mean square error (MSE), the mean
absolute error (MeanAE), the leave-one-out (LOO) error, the bootstrap error (BE),
the predictive estimation of model fidelity (PEMF) error and the root mean square
error (RMSE). There are many different possible criteria for classifying the existing
error metrics. For example, based on whether an additional verification sample set is
needed, these metrics can be divided into metrics that rely on testing methods and
metrics that rely on sampling methods. The former metrics evaluate the accuracy of
a surrogate model based on the same sample sets used for modelling, and the
evaluation results are highly dependent on the error metric itself. The latter metrics
require additional test samples, and their performance is mainly influenced by the
method of selecting the validation test. Moreover, metrics that rely on sampling
methods may not be affordable when the simulation cost is high. Based on the
region of the design domain in which the verification method works, the existing
methods can also be classified into methods that quantify the global error and
methods that quantify local errors (Goel et al. 2007). Methods that quantify the
global error generally include three different types (Queipo et al. 2005): split
sampling, bootstrapping and the Akaike’s information criterion (AIC) method.
Methods for measuring local errors include (1) the prediction MSE for kriging and
(2) the linear reference model (LRM) (Nguyen et al. 2011). Based on whether the
error metric depends on the specific model, the existing error metrics can addi-
tionally be roughly classified as either parametric (model-based) or distribution-free
(model-independent) metrics (Goel et al. 2009). Parametric error metrics are gen-
erally based on statistical assumptions. One example is the prediction variance
(PV) of a polynomial response surface (PRS) model, which is computed based on
the assumptions that the predictions contain normally distributed noise of zero
mean and that the variance is the same everywhere and uncorrelated. If these
assumptions are invalid, the predictions may exhibit a large error.
Model-independent error metrics can be applied to more complex problems, but
they may incur higher computational costs. Distribution-free verification methods
are not limited to any one surrogate model or specific kinds of surrogate models,
and they generally have wider applications. For other classifications of verification
models for surrogate models, readers can refer to Hyndman and Koehler (2006), Li
and Heap (2011).

In this chapter, a number of error metrics are first introduced, separated into two
different classes based on whether an additional verification sample set is needed.
Then, a review of the applications of these error metrics in engineering design is
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presented. The performances of the metrics are investigated for problems with
various characteristics. Finally, some guidelines for selecting suitable verification
methods are provided.

5.1 Metrics Relying on Testing Methods

5.1.1 Jackknife Error

Quenouille (1949) first introduced the jackknife method, in which the bias of a
serial correlation estimator is estimated by removing part of the original sample set,
recalculating the estimator based on the remaining samples and comparing the
differences between the predicted responses. Let x1; x2; . . .; xn denote the set of
samples, which are randomly, independently and identically distributed. Hn ¼
f̂nðx1; x2; . . .; xnÞ is the estimator of a parameter h based on this sample set of size n.
The bias of this estimator can be defined as (Miller 1974)

bias Hnð Þ ¼ f̂n x1; x2; . . .; xnð Þ � h ð5:1Þ

When sample xk is removed, the estimator for sample xk becomes Hn�1;k ¼
f̂n�1ðx1; . . .; xk�1; xkþ 1; . . .; xnÞ. If this process is repeated for k ¼ 1; 2; . . .; n until
each sample has been deleted only once, n jackknife estimators, one for each
sample, will be obtained. The jackknife predictor of the standard error can then be
expressed as (Efron and Tibshirani 1993a):

ŜJACK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
n

Xn
k¼1

ðHn�1;k � �HnÞ2
s

ð5:2Þ

where �Hn ¼ 1
n

Pn
i¼1 Hn�1;i. The factor ðn� 1Þ=n is selected to ensure that Ŝ2JACK is

an unbiased variance estimator of the sample mean value. As the size of the sample
set increases, the delete-1 jackknife error may begin to incur an excessive com-
putational cost; in this case, a grouped jackknife computation can be used. In the
grouped jackknife approach, the original sample set of size n is divided into p
groups of equal size ðn ¼ pgÞ, and each time, a randomly selected group is deleted
instead of only one point. After the procedure has been repeated p times, such that
each group has been deleted once and only once, the grouped jackknife predictor of
the standard error is given as

ŜJACK;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 1
p

Xp
k¼1

ðHp�1;k � �HpÞ2
s

ð5:3Þ
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where �Hp ¼ 1
p

Pp
i¼1 Hp�1;i is the same as before. The jackknife error is a

distribution-free error metric and does not require the theoretical formulas that are
needed in traditional approaches (Shao and Tu 2012).

5.1.2 Bootstrap Error (BE)

The bootstrap approach was first proposed in 1993 (Efron and Tibshirani 1993b).
There are two types of bootstrap methods: the nonparametric bootstrap method and
the parametric bootstrap method. In the parametric bootstrap method, the original
data are fitted to a certain type of distribution to estimate the shape parameters, and
sampling is then performed from the obtained distribution using the Monte Carlo
sampling method. For the nonparametric bootstrap method, there is no need to
predefine the form of the distribution, and thus, this method is more widely used.
Bootstrap observations are generally obtained through resampling with replacement
from the original sample set m times. Resampling with replacement means that for a
sample set of size n, the probability that each sample may be chosen each time is
1=n. With m sampling iterations, this sampling method may result in one original
sample, say xi, being selected all m times, while the other n� 1 samples are never
sampled. Of course, the probability of this event occurring is very small, but it is
still possible for it to happen. Let the frequencies with which the samples
x1; x2; . . .; xn occur in the bootstrapped sample set be denoted by f1; f2; . . .; fn,
respectively; these frequencies should satisfy f1 þ f2 þ � � � þ fn ¼ m and should
follow a multinomial distribution.

When the bootstrap method is used to verify the accuracy of a surrogate model,
through the m iterations of resampling with replacement, m bootstrapped subsets
will be obtained. For each subset, the bootstrapped samples are the training set, and
the remaining samples from the original sample set are the test set. The training set
is used to construct an intermediate surrogate model, while the test set is utilized to
validate its accuracy. Given a collection of m subsets fS1; S2; . . .; Smg, the LOO BE
can be defined as

eboot ¼ 1
m

Xm
i¼1

err�i ð5:4Þ

This estimator is biased upwards, but the estimation error is considered to show
less variance compared with the cross-validation error. It has been found that when
this metric is applied for model selection, the bootstrap selection procedure is not
consistent, but the consistency can be improved with appropriate modifications
(Shao 1996).

Since the subsets are sampled with replacement, the probability that any given
sample point will not be chosen in each subset is ð1� 1=nÞn � e�1 � 0:368; the
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expected number of samples from the original data set appearing in the test set is
thus 0:632n. The 0.632 bootstrap estimation method was proposed by Efron (1983),
and the corresponding metric can be formulated as follows:

e0:632boot ¼ 1
n

Xn
i¼1

ð0:632 � e0i þ 0:368 � accsÞ ð5:5Þ

where e0i is the error estimate for bootstrap sample i, and accs is the re-substitution
accuracy estimate on the full data set (i.e. the accuracy on the training set). The
upward bias of the original BE is corrected by averaging it with a downwardly
biased estimator in the e0:632boot calculation. In some interpolation models, the
re-substitution error is 0 in Eq. (5.5). Therefore, the 0.632 BE can be written as

e0:632boot ¼ 1
n

Xn
i¼1

0:632 � e0i ð5:6Þ

However, in situations in which the model is severely overfitted, the estimator
e0:632boot is downwardly biased because accs ¼ 0 in these cases. To overcome this
drawback, Efron and Tibshirani (1997) proposed the 0.632 + bootstrap metric, in
which a greater weight is assigned to the accs term when the overfitting is larger to
obtain a less-biased compromise between the two terms in Eq. (5.5). The algorithm
for calculating e0:632þboot is presented as Algorithm 5.1.

Algorithm 5.1: Calculating the e0:632þboot error

1. Calculate the no-information error h. h can be estimated as the loss of all N2
test sample pairs

ðyi; xjÞ:
ĥ ¼ 1

N2
test

P
i;j
L yi; f̂ xið Þ� � ði; j ¼ 1; 2; . . .;NtestÞ

2. Calculate the relative overfitting rate:
R̂ ¼ ðe0i � accsÞ=ðĥ� accsÞ
3. The e0:632þboot BE estimator is given by

e0:632þboot ¼ ŵ � e0i þð1� ĥÞ � accs
where ŵ ¼ 0:632=ð1� 0:368 � ĥÞ: The range of variation of the weight ŵ is from 0.632 (no
overfitting) to 1 (severe overfitting)

It is important to note that when the bootstrap method is used, repeated sample
points may be obtained during the resampling process, which may lead to the
failure of kriging model construction. Therefore, a small amount of random noise is
sometimes added to the training points (Efron 1979).
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5.1.3 Cross-Validation Error

Cross-validation (CV) was originally proposed in the 1930s (Larson 1931), and it
was further developed and refined in the 1970s by Stone (Stone 1974; Salkind
2010). In the CV method, the uncertainty of a surrogate model is evaluated by
splitting the current sampling set into training data and test data. In k-fold CV, the n
sample points are divided into k disjoint subsets of equal size m ¼ n=k. The model
is trained k times, each time using all of the subsets th ðh ¼ 1; 2; . . .; kÞ except one
for model training, and the remaining subset is used to calculate the prediction
error. The k-fold CV estimator is defined as the mean of the k errors calculated in
this way:

eCV ¼ 1
k

Xk
i¼1

1
m

X
j2th

Fðyj; f̂�iðxjÞÞ ð5:7Þ

where f̂�iðxjÞ is the value at sample xj predicted by the surrogate model built based
on all subsets except subset i.

The k-fold CV method is a biased estimation method; however, the bias can be
reduced by increasing the number of folds k (Kohavi 1995). Meckesheimer et al.
(2002) investigated the influence of k for different kinds of surrogate models and
suggested the use of k ¼ 1 for low-order polynomial as well as radial basis function
(RBF) models and the use of k ¼ 0:1n or

ffiffiffi
n

p
for kriging models, where n is the

number of sample points used to construct the surrogate model. Rodriguez et al.
(2010) also studied the changes in the bias and variance with different k values and
found that k ¼ 2 results in the most strongly biased estimator. In their work, k ¼ 5
or k ¼ 10 was recommended for use in error estimation to achieve a good balance
between bias and computational cost.

Leave-one-out cross-validation (LOO-CV) is a special case of k-fold CV (Borra
and Di Ciaccio 2010). In LOO-CV, k is equal to the number of sample points n;
thus, each time, only one point is left out, and the other n� 1 points are utilized to
build the intermediate surrogate model. During the LOO validation process, n
intermediate surrogate models are built. The LOO error at point xi is the difference
between the response ŷ�i predicted by the i-th surrogate and the true response yi.
The sum of the LOO errors at all points is referred to as the generalized
cross-validation (GCV) error, which can be formulated as follows:

eGCV ¼
Xk
i¼1

ŷ�i xið Þ � yi xið Þj j ð5:8Þ

Based on the GCV error, the predicted residual error sum of squares (PRESS)
measure is widely used when applying the LOO-CV method to assess the accuracy
of a surrogate model (Vehtari et al. 2017). The PRESS is formulated as follows:
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ePRESS ¼ 1
k

Xk
i¼1

ŷ�i xið Þ � yi xið Þj j ð5:9Þ

The root mean square of the PRESS is calculated as follows:

rPRESS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ePRESS=k

p
ð5:10Þ

The main disadvantage of k-fold CV is that the k training sets are not inde-
pendent of each other, i.e. different training sets and/or test sets may contain some
of the same data. This may lead to a large variance of the CV estimator (Breiman
1996). Several researchers have attempted to estimate this variance, but it has been
shown that no biased estimator of the variance can be calculated. The LOO-CV
method can provide a nearly unbiased estimate of the generalization error of a
model. In this verification method, each point will appear in the training set k � 1
times and will appear in the test set only once. However, compared with that of the
k-fold CV error (k[ 1), the variance may be increased. For a sufficiently small
sample set, the variance of the estimation may be unacceptable. To alleviate this
problem, some researchers have defined certain bounds to ensure that the perfor-
mance of LOO-CV will never be worse than that of the apparent error estimator
under weak assumptions of error stability. In addition, some bias-corrected versions
of the CV error have been proposed by Burman (1989) and Yanagihara et al.
(2006). In the first study, bias correction of the k-fold CV error was considered,
whereas the latter addressed only the bias correction of the LOO-CV error. Fushiki
(2011) defined two families that relate the k-fold CV error to the training error and
tested the performance of Burman’s method on several test problems. Another
problem with the LOO-CV error is that its value may be sensitive to a few large
individual errors. Therefore, the mean pointwise cross-validation error ratio
(PRESS-ratio) has been proposed to alleviate this problem (Goel and Stander 2009).
The formula for the PRESS-ratio is given as follows:

rratio ¼ 1
k

Xk
i¼1

ŷ�i xið Þ � yi xið Þ
ŷ�i xið Þ

����
���� ð5:11Þ

The LOO error at each point is scaled by the predicted response at that point;
thus, the magnitudes of the errors at all points are adjusted to a comparable level,
and more importance can be placed on smaller values.

5.1.4 Prediction Variance (PV)

For some specific kinds of surrogate models such as kriging models, when such a
model is used to predict the responses at unobserved points, the PV can also be
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easily calculated at the same time. The PV can be used as a metric for assessing the
accuracy of surrogate models. The PV is a local error measurement metric, with a
larger PV at a certain point indicating a larger range of uncertainty of the prediction
at that point. In a kriging model, the prediction errors at two different points are not
independent of each other, and the correlation between them is usually related to the
distance between them. The larger the distance is, the weaker the correlation. Thus,
for a point that is close to one or more sample points, the prediction error will tend
to be smaller; the error will be very high at a point that is far away from all samples;
and if a point overlaps with any point in the sample set, the prediction error at that
point will be zero. The derivation and formulas for the PV of a kriging model can
be found in Goel et al. (2009), Liu et al. (2012). For the example shown in
Fig. 5.1a, the red line is the kriging approximation, the black line is the true
function, and the pentagrams are the sample points. The blue shadowed area cor-
responds to the prediction uncertainty and represents the estimated area in which
the responses may lie. The prediction MSE at each point and the corresponding true
errors are plotted in Fig. 5.1b. Although there is some difference between the two
curves, the prediction MSE still reflects the variation tendency of the true error as
well as the rough location of the maximum error. This metric provides a rapid
alternative for assessing the model quality and can be useful for model selection or
model refinement.

The average MSE over a set of points can be used as the error metric to reflect
the overall uncertainty of a surrogate model, as shown in Eq. (5.12).

emse ¼ 1
n

Xn
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2ðxkÞ

p
ð5:12Þ

where X ¼ fx1; x2; . . .; xng represents a randomly generated set of unobserved
points with n elements, and r̂2ðxkÞ denotes the PV at unobserved point xk . A lower

Fig. 5.1 Kriging prediction MSE for a one-dimensional problem
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emse indicates that the surrogate is more accurate. For a large number of test points
n, this error metric is equivalent to the Monte Carlo integrated MSE (IMSE) (Goel
and Stander 2009; Romero et al. 2015).

The maximum MSE at all points can be used to measure the risk of a large error
in prediction, and it can be formulated as follows:

MMSE ¼ maxx2D½dmseðxÞ� ð5:13Þ

where D is the design space and dmseðxÞ is the prediction MSE at any point within
the input space. However, for problems in more than two dimensions, the areas with
the maximum prediction uncertainty are generally located on the boundaries of the
design domain. Thus, when this metric is used for model refinement, there is a
higher chance of selecting sample points at the edges of the design domain, which
may not be efficient for kriging.

5.1.5 Predictive Estimation of Model Fidelity (PEMF) Error

The PEMF method was proposed by Mehmani et al. (2015). PEMF is also a
resampling-based method, and it estimates the model fidelity within the domain of
interest. The PEMF method assesses the accuracy of a surrogate model by ana-
lysing the model error variation based on various numbers of training points.
In PEMF, intermediate surrogates are iteratively constructed using different subsets
of sample points. In each iteration, the remaining points in the whole sample set that
are not used for generating the intermediate surrogate are used to estimate the
median and maximum errors and determine their distributions. After all interme-
diate surrogate models have been constructed, a curve that reflects how the model
error changes with the sample density is obtained. Since the final surrogate model is
built based on the whole sample set, regression models are utilized to calculate the
statistical modes of the median and maximum error distributions. If a monotonic
trend (MT) criterion is satisfied by the fitted regression function for the variation of
error with sample density (VESD), this VESD function is used to predict the fidelity
of the final model. Otherwise, a stable implementation of k-fold CV (called
PEMF-based k-fold CV) is used to predict the error of the final surrogate model.
The PEMF method can be implemented using the PEMF CV toolbox (Mehmani
et al. 2015).

5.2 Metrics Relying on Sampling Methods

For metrics relying on sampling methods, additional sample points are generated in
the design space to enable a reasonable judgement about the surrogate model. The
performance of this kind of method is strongly affected by two factors. The first
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factor is the number of sample points. If the number of sample points is not
sufficiently large, the error estimation results may vary with different data sets, and
the reliability of the model will also change. Therefore, a large number of verifi-
cation samples are preferred for model verification. On the other hand, a large data
set means additional simulations, which may be prohibitive when HF simulations
are expensive. Thus, a reasonable number of verification samples must be chosen
before testing the accuracy of a surrogate model. The second factor is the method
used to generate the verification points. Generally, the random sampling method is
commonly used to measure the generalization performance of a model. Latin
hypercube sampling (LHS) has also been used by many researchers; the advantage
of this method is that the verification samples are uniformly distributed in the
design domain, enabling better estimation of the global accuracy of the surrogate
model. After the samples are obtained, various types of errors between the pre-
dictions and the corresponding observations can be calculated to measure the global
or local accuracy of the surrogate model. Several popular alternatives are briefly
introduced in this section; for additional forms of error metrics, readers can refer to
Li and Heap (2011), Franses (2016).

5.2.1 Coefficient of Determination

The coefficient of determination (R2) is a commonly used regression-based metric
for the agreement between the observed data and the predicted responses. It is
usually presented as a quantity that estimates the proportion of explained variance
present in the data (Grafton 2012). This metric can be calculated using the
following formula (Barrett 1974; Nagelkerke 1991):

R2 ¼ 1�
PNtest

i¼1 ðyi � ŷiÞ2PNtest
i¼1 ðyi � �yiÞ2

ð5:14Þ

where yi is the true response, ŷi is the prediction for yi obtained with the constructed
surrogate model, �yi is the mean of the true responses and Ntest is the total number of
verification samples. The same notation is also applied below for the other formulas
introduced in this section. The quantity yi � �yi can be regarded as the deviation in
the worst case, i.e. the case in which there is no relation between the predictions and
the observations. The expression for this metric shows that there is no assumption
that the responses need to satisfy. When this metric is used as an indicator of the
goodness-of-fit of a surrogate model, its values are distributed in the interval [0, 1].
The larger the value is, the closer the predicted and observed responses are.
Generally, a low value (R2 < 0.5) indicates that the correlation between the pre-
dicted and true values is weak, while a moderately low value (0.5 < R2 < 0.8)
indicates that the surrogate model may be not adequate or that there is substantial
error variation (possibly caused by a large measurement spread). The main
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disadvantage of this method is that a higher value of R2 may not indicate a more
accurate model since the R2 value may also increase even when irrelevant terms are
added into the model. This problem can be partially alleviated by adopting a
modified version of the metric (Renaud and Victoria-Feser 2010):

R2
adj ¼ 1� n� 1

n� k � 1
R2 ð5:15Þ

where k is the number of predictor variables in the linear regression model (if there
is no intercept term, the denominator in the formula should be changed to n� k).

5.2.2 Mean Square Error (MSE)

The MSE is the mean of the overall squared prediction errors and can be expressed
as

MSE ¼ 1
Ntest

XNtest

i¼1

ðyi � ŷiÞ2 ð5:16Þ

An MSE equal to zero means that the estimator can perfectly predict the
response of a parameter. The smaller the MSE value is, the better the quality of the
surrogate.

5.2.3 Root Mean Square Error (RMSE)

The RMSE can be regarded as the average vertical distance of the actual obser-
vations from the fit line (Li 2010). In this method, points with larger errors tend to
be assigned higher weights by penalizing the variance. The formula for the RMSE
when evaluated at a set of test points (Ntest) is as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

i¼1

ðyi � ŷiÞ2
vuut ð5:17Þ

Mathematically, the RMSE is the square root of the MSE. Thus, it is also a
global error metric, and a smaller value represents a higher accuracy.
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5.2.4 Maximum Absolute Error (MaxAE)

The maximum absolute error (MaxAE) is a local error metric that measures the
maximum approximation error of the surrogate model. The formula for the MaxAE
for a set of test points can be expressed as follows (Bhattacharyya 2018):

MaxAE ¼ maxð yi � ŷij jÞ ði ¼ 1; 2; . . .;NtestÞ ð5:18Þ

5.2.5 Relative Maximum Absolute Error (RMAE)

The relative maximum absolute error (RMAE) is similar to the MaxAE except that
it is normalized with respect to the standard deviation. The RMAE is also a metric
that indicates the maximum local error of the surrogate model in the design space,
although sometimes the global errors represented by other metrics are good enough.
A smaller value of this metric indicates a higher local accuracy of the surrogate
model. The RMAE has the following form:

RMAE ¼ maxð yi � ŷij jÞ
STD

ði ¼ 1; 2; . . .;NtestÞ ð5:19Þ

5.2.6 Mean Absolute Error (MeanAE)

The mean absolute error (MeanAE) is the mean value of the errors at all verification
points, with the same weight assigned to all errors. It is often regarded as the true
error of the surrogate model when sufficient verification points are considered, and
it is defined as follows:

MeanAE ¼ 1
Ntest

XNtest

i¼1

yi � ŷij j ði ¼ 1; 2; . . .;NtestÞ ð5:20Þ

5.2.7 Relative Average Absolute Error (RAAE)

The relative average absolute error (RAAE) was used in Jin et al. (2001) to measure
the global error of a surrogate model. The smaller the value of the RAAE is, the
more accurate the surrogate model. The RAAE is defined as follows:

RAAE ¼ 1
Ntest � STD

XNtest

i¼1

yi � ŷij j ð5:21Þ

where STD denotes the standard deviation of the predicted responses.
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5.3 Selection of Error Metrics

5.3.1 Review of Error Metrics for Surrogate Models

When multiple error metrics are available in engineering design, the question of
how to select the most appropriate one arises. The performances of various error
metrics have been tested in accordance with their application by several researchers.
For the first of the four cases regarding the application of error metrics discussed at
the beginning of this chapter, Liu et al. (2017) developed an adaptive sampling
method based on the PV, representing the local error, and the CV error, repre-
senting the global error. A dynamic balance factor was used to balance local
exploitation with global exploration. The proposed method was tested on several
benchmark examples, and the results showed that it is more efficient compared with
other alternatives and can achieve a higher accuracy with no increase in cost. Eason
and Cremaschi (2014) developed a sequential sampling method that combines
adaptive and space-filling characteristics. In this method, the jackknife method is
used to create subsets, construct surrogate models and estimate the variance of the
responses. A point with a larger PV has a higher chance to be selected as a
sequential sample. When exact simulations are expensive, it may be unaffordable to
calculate the true MAE and RMSE. Boopathy and Rumpfkeil (2014) proposed the
maximum absolute discrepancy and the root mean square discrepancy as global and
local measures, respectively, of surrogate model accuracy. Through application to a
series of analytical test problems, it was found that these two metrics show good
agreement with the actual MAE and RMSE. The proposed metrics were applied in a
training sample selection framework, and their performances were compared by
means of LHS.

For case (2), i.e. the estimation of the true fidelity of a surrogate model, Hu et al.
(2018) compared the performances of LOO, BE, PEMF and PV metrics for
quantifying the uncertainty of multi-fidelity models and found that in
low-dimensional problems, the prediction MSE shows the best performance, while
the LOO error behaves best in high-dimensional situations. Jin et al. (2001) used the
R2, RAAE and RMAE metrics to evaluate the performances of four surrogate
models and found that the RBF model performed the best with a small and scarce
sample set. Willmott and Matsuura (2005) compared the performances of the
RMSE and MeanAE and concluded that the MeanAE is a more natural error metric
than the RMSE is for reflecting the average error of a model. However, Chai and
Draxler (2014) argued that the RMSE is not ambiguous in its meaning and thus is
more suitable than the MAE for the case in which the model errors follow a normal
distribution. Zhou et al. (2017) proposed an adaptive modelling method based on
the PV obtained from the low-fidelity (LF) model and the discrepancy model,
which reflects the difference between the HF and LF models. The mean of the PV
over a set of points is used to represent the accuracy of the constructed surrogate
model and to judge whether the stopping criterion is met.
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For case (3) of the application of error metrics, i.e. selecting the optimal weights
for an ensemble of surrogate models, Viana et al. (2009) discussed the performance
of PRESSRMS, which is a metric that combines the PRESS and RMSE, for model
selection and found that PRESSRMS is a good filter for screening inaccurate sur-
rogate models when there are sufficient samples. Goel et al. (2007) used the gen-
eralized mean square cross-validation error (GMSE) as a global metric for
calculating the weights of PRS, kriging and RBF models in an ensemble of sur-
rogate models, where the errors for each surrogate model at each sample point were
considered in the heuristic formulation. Acar and Rais-Rohani (2009) also sug-
gested using the GMSE as a global metric but proposed that the weights of the
different surrogate models should be selected to minimize the overall GMSE of the
ensemble, which does not depend on the pointwise accuracy. Instead of using
global error measures, Sanchez et al. (2008) proposed using the PV as a local
accuracy metric, with flexible weights for each component in the ensemble over the
design domain. Furthermore, Acar (2010) proposed the use of pointwise CV as an
alternative to the PV for local error measurement. The proposed method was tested
on several problems of varying complexity, and it was found that the two methods
showed similar performance.

When multiple alternative surrogate models are available and the designers want
to choose the best among them, i.e. case (4), error metrics are often used to obtain
an overall assessment of modelling quality. Goel and Stander (2009) applied the
RMSE, PRESS and PRESS-ratio to select the best RBF network topologies and
used the correlation coefficient, RMSE, ARE and MaxAE to evaluate the accuracy
of the constructed surrogate model. The results showed that using the PRESS-based
error metric to determine the best RBF network topology yielded the most robust
result, while the PRESS-ratio-based selection criterion behaved reasonably well,
but the method was very sensitive to the design of experiments (DoE) method
adopted. Mao et al. (2014) proposed a new LOO validation method for selecting the
best multidimensional support vector regression (SVR) model to improve the
prediction performance for multi-input multi-output problems. Compared with the
traditional LOO method, the proposed method is more efficient and robust. The
performance of the proposed method in terms of generalization performance,
numerical stability and computational cost was demonstrated on two problems.
Although the LOO approach is a very popular method for model selection (Shao
1993; Yang 2007; Arlot and Celisse 2010), it is not always the first choice for all
model selection problems. Gronau and Wagenmakers (2018) discussed some lim-
itations of Bayesian LOO-CV in the context of model selection. In addition, the
AIC and the Bayesian information criterion (BIC) were used to select among six
stock–recruitment models, and it was found that both methods worked well in this
example. When nested models are considered, however, the BIC performs better
than the AIC does (Wang and Liu 2006).
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5.3.2 Performance Comparison of Commonly Used Error
Metrics

In this section, the error estimation performances of the LOO and BE metrics,
which rely on testing methods, and the RMSE and MeanAE, which rely on sam-
pling methods, are illustrated by means of two numerical examples and a cantilever
beam design problem. In this test, the MeanAE results are regarded as representing
the true fidelity of the surrogate model, and the other three metrics are compared
with it. Several factors that may influence the evaluation results are considered,
such as the number of samples, the sampling method and the noise level. Several
general conclusions can be obtained from the results of the comparison, which can
serve as guidance for error metric selection for problems with different character-
istics. In our study, to account for the possibility of repeated points in the bootstrap
method, every design variable of the inputs was normalized. Then, a small noise
level between 0 and 1E-7 was added to the normalized inputs, while the responses
at these points remained unchanged.

Two benchmark numerical examples, namely, the two-dimensional camelback
function and the nine-variable extended Rosenbrock function (Acar 2010; Ye et al.
2018), are considered as representative low- and high-dimensional problems,
respectively. The formulas for these two problems are presented below.

Function 1 (F1): Camelback (CB) function

f x1; x2ð Þ ¼ 4� 2:1x21 þ
x41
3

� �
x21 þ x1x2 þ �4þ 4x22

� �
x22

x1 2 �3; 3½ �; x2 2 ½�2; 2�
ð5:22Þ

Function (F2): Extended Rosenbrock function (with nine variables)

f x1; x2; . . .; x9ð Þ ¼
X8
i¼1

½ 1� xið Þ2 þ 100ðxiþ 1 � x2i Þ2�; xi 2 ½�5; 10� ð5:23Þ

5.3.2.1 Influence of Sample Size

The influence of the sample size on the performances of the four error metrics is
investigated first. The errors predicted by the different error metrics and the true
errors for the problems of different dimensionalities are plotted in Fig. 5.2a–d. The
number of sample points (NHF) was set to 5, 10, 15 and 20 times the number of
design variables, denoted by 5*ndv, 10*ndv, 15*ndv and 20*ndv, respectively, in
the figures. It is obvious that as the number of sample points increases, the model
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quality tends to improve. However, once the surrogate has already achieved a
sufficiently high accuracy, continuing to add more sample points will contribute
little to the accuracy, and the true error will remain almost the same, as shown in
Fig. 5.2d. The RMSE and LOO results show a tendency similar to that of the true
error, while the variation in the BE is very small for both problems even when the
number of HF samples is increased to four times the initial sample size. The LOO
error is always the closest to the true error in the kriging, RBF and SVR models, but
it does not perform well for the PRS model when the samples are sparse, as seen in
Figs. 5.2d and 5.3d. Thus, the LOO error metric is the best option for quantifying
the uncertainty of kriging, RBF and SVR models. For the PRS model, the RMSE
shows almost the same trend as the true error does and is very close to the true error
for both F1 and F2. Thus, the RMSE is the best option for PRS models with sample
sets of different sizes. It is worth noting that the RMSE overestimates the error of
the PRS model as well as the LOO estimates for the other three surrogate models.

5.3.2.2 Influence of Noise Level

Due to the presence of uncertainty in engineering applications, some sampling noise
may be included in the responses, which may affect the accuracy of the surrogate

Fig. 5.2 Comparison of four error metrics with different numbers of sample points (F1): a kriging,
b RBF, c SVR and d PRS
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model. In this analysis, artificial noise was added to the output response value in
accordance with the following formula (Zhao and Xue 2010; Zhou et al. 2016):

Y ¼ f xð Þþ l0d ð5:24Þ

where l
0 ¼ 0� 15% is a scaling parameter and d is a random number sampled from

the standard Gaussian distribution N�ð0; 1Þ. In engineering design, multiple tests
with the same input parameter values need to be implemented to determine the
noise level. Four levels of artificial noise, 0, 5, 10 and 15%, were added to the
response values at the corresponding sample points using Eq. (5.24). The accuracy
results under different levels of noise are plotted in Figs. 5.4 and 5.5.

It is obvious that in the low-dimensional case, the MeanAE values of the kriging,
RBF and SVR models are very close to each other, meaning that the accuracies of
these three models are similar, and that the PRS model is inferior to the other three
models. Among the four error metrics, the RMSE and LOO metrics always over-
estimate the models, while the BE tends to underestimate the true fidelity. For the
high-dimensional problem, it can be seen that the accuracies of the four surrogate
models are different, but the conclusions regarding the performances of the error
metrics still hold. The LOO metric almost always performs the best for the kriging,
RBF and SVR models for both functions, with the exception of the results presented

Fig. 5.3 Comparison of four error metrics with different numbers of sample points (F2): a kriging,
b RBF, c SVR and d PRS
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in Fig. 5.4b, where the LOO and BE metrics show similar performance. By con-
trast, the bootstrap method is the most suitable verification method for the PRS
model in both the high- and low-dimensional problems since the BE results show
the smallest offset from the MeanAE curve. In addition, the RMSE is slightly better
than the BE for all surrogate models except the PRS model, and the RMSE is
superior to the LOO error for the PRS model, as seen from Figs. 5.4d and 5.5d.

5.3.2.3 Sampling Methods

In this section, two one-shot sampling methods, the LHS method and the centroidal
Voronoi tessellation (CVT) method (Du et al. 1999), considered. LHS mainly
exhibits the projective property, while CVT primarily satisfies the space-filling
property. The number of samples was fixed to 5d for this analysis, and the calcu-
lated error metrics are presented in Figs. 5.6 and 5.7. For the problem with two
design variables, it can be seen that the RMSE and MeanAE results obtained under
the two different sampling methods are almost the same; thus, these two error
metrics are not very sensitive to different kinds of sampling methods. The RMSE is
always larger than the true error of the surrogate model. On the other hand, the
results for the two testing-method-based metrics show stark differences under LHS

Fig. 5.4 Comparison of four error metrics under different noise levels (F1): a kriging, b RBF,
c SVR, d PRS
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and CVT. The LOO results obtained with LHS tend to overestimate the true error
and underestimate the error obtained with the CVT sampling method, while the BE
always underestimates the fidelity of the surrogate model. Thus, the performances
of the LOO and bootstrap methods are easily influenced by the distribution of the
sample points. For the high-dimensional problem, the conclusions regarding the
LOO and BE metrics are similar to those obtained before; the only difference is that
the evaluation results for all four metrics are obviously influenced by the sampling
method. Therefore, it can be concluded that the LOO error usually overestimates
the model error in the case of sampling methods that mainly exhibit the projective
property and underestimates the accuracy of the surrogate model in the case of
sampling methods that primarily satisfy the space-filling property. The RMSE is
always larger than the true error, and the BE is smaller than the MeanAE, regardless
of the sampling method.

5.3.2.4 Efficiency and Robustness

The time needed to evaluate the model error is another important evaluation cri-
terion for error metrics. In this analysis, all tests were conducted on a computational

Fig. 5.5 Comparison of four error metrics under different noise levels (F2): a kriging, b RBF,
c SVR, d PRS
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platform with a 3.00 GHz Intel (R) Xeon (R) E3-1220 v5 CPU and 32 GB of
RAM. The number of sample points was fixed at 5d, and only the kriging approach
was used to build the surrogate models here. First, 100 different sample sets were
generated. Then, 100 kriging models were built based on the sample sets. Finally,
the different metrics were applied to validate the accuracy of these models. The total
time required to assess the accuracy of the kriging models for each method was
recorded. Since error metrics relying on sampling methods require additional ver-
ification samples, 100d further sample points were randomly generated for the
calculation of the RMSE and MeanAE. Most of the computational cost for the
RMSE and MeanAE was incurred for generating the verification samples, and the
time needed to calculate the metric value was very short or negligible. Therefore,
the computational costs of the RMSE and MeanAE depend on the simulation time,
and only the run times for the LOO and BE calculations are listed in Table 5.1.

The run time of the bootstrap method is approximately 36.5 times that of the
LOO method for the two-dimensional problem, whereas for the high-dimensional
problem, this factor changes to 11. Thus, the bootstrap method obviously incurs a
higher computational cost than the LOO method does. Furthermore, the run times
of the bootstrap and LOO methods increase by factors of 16.37 and 54.08,

Fig. 5.6 Comparison of four error metrics under different sampling methods (F1): a kriging,
b RBF, c SVR, d PRS
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respectively, when the number of design variables increases from two to nine; thus,
the computational costs of these testing-method-based error metrics grow expo-
nentially as the dimensionality of the problem increases. However, when the
simulation cost is high, the time needed to build the intermediate surrogate models
in the bootstrap and LOO methods is minor compared with the time required for the
other methods; thus, these two methods are sometimes preferred by designers in
engineering practice.

LHS may generate different sample distributions when it is run multiple times,
which may result in a series of surrogate models with different accuracies.
Therefore, the robustness of the results obtained with the different error metrics is
also investigated here. The standard deviation of the evaluation results is selected as
the index for evaluating the variation of the errors for different sample sets. The

Fig. 5.7 Comparison of four error metrics under different sampling methods (F2): a kriging,
b RBF, c SVR, d PRS

Table 5.1 Run times of
different error metrics

Bootstrap LOO

F1 86.9963 2.3789

F2 1.4243e+03 1.2864e+02
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higher the standard deviation is, the less robust the metric. Box plots of the four
error metrics for the two numerical examples are shown in Fig. 5.8. With regard to
the median value of the results, the LOO error is the closest to the true value in both
the low- and high-dimensional cases. However, the variation range of the LOO
results is also the largest among the four metrics in all tests (the standard deviations
of the RMSE, BE, LOO and MeanAE metrics are 13.2657, 4.0667, 19.5279 and
9.3217, respectively, for F1 and 31865.8836, 8711.2998, 54071.5815 and
25336.9871, respectively, for F2). Thus, the LOO method is the least robust under
different sample distributions, while the bootstrap method is the most robust. In
addition, the RMSE has the most similar standard deviation to that of the true
responses, meaning that the RMSE can best reflect the variation range of the true
errors.

Several conclusions can be obtained from the comparisons presented above,
which can serve as guidelines for selecting error metrics for surrogate models with
different characteristics, as summarized below.

Considering accuracy, efficiency and robustness, although the results of the LOO
method show a larger variance, this method achieves a higher accuracy across
different numbers of samples and sampling methods, is relatively fast, does not
require an additional set of verification samples and does not incur any obvious
drawback with an increasing sample size; therefore, it is still the best overall choice
among the four methods. It should be noted that the LOO method will tend to
overestimate the true fidelity of the surrogate model unless the samples used to
construct the model are generated based on sample points with the space-filling
property.

The RMSE is always higher than the true error, while the BE tends to under-
estimate the true error. When the model responses include noise, the RMSE and
LOO metrics are superior to the BE for kriging, RBF and SVR models, while the
BE is the best choice for PRS models. However, the bootstrap method incurs a very
high computational cost compared with the LOO method and therefore may not be
applicable for very high-dimensional problems or a large number of samples.

Fig. 5.8 Robustness comparison of four error metrics: a F1 and b F2
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Chapter 6
Sampling Approaches

The design of experiments (DoE) is a key process in constructing a surrogate
model: DoE methods are used to select the sample points at which simulations are
to be conducted. Sample points generated by different DoE methods may result in
the same surrogate model but with different accuracies; thus, allocating sample
points reasonably in the design space is important for improving the model accu-
racy while respecting a certain design cost. The classic DoE methods that are
widely used for physical experiments include factorial or fractional factorial
methods (Box and Hunter 1961; Myers et al. 2016), central composite design
(CCD) (Chen 1995; Branchu et al. 1999) and the Box–Behnken method (Box and
Behnken 1960). These methods are designed to minimize the random errors caused
by unknown (hidden) and/or uncontrolled variables in physical experiments.
However, computer simulations are generally free of such randomness; they
involve more systematic error rather than the random error encountered in physical
experiments. Thus, directly applying these classic sampling methods to computa-
tional experiments may be not appropriate due to this inherent difference. In
addition, Sacks et al. (1989) noted that some classic DoE methods, e.g. CCD and
D-optimal design, are inefficient or even inadequate for deterministic computer
simulations.

Modern DoE methods, which treat space filling of the design space as the
primary consideration, have attracted widespread attention. These modern DoE
methods can be generally classified into two categories: one-shot sampling methods
and adaptive sampling methods. In a one-shot sampling method, the samples are all
generated at the same time, and the aim of this kind of method is to fill the design
space as uniformly as possible. The advantages of one-shot sampling methods are
that they are simple and easy to implement. However, if the data provided by a
one-shot sampling method do not meet the predefined requirements set by the
designers, then a new experimental design scheme must be rearranged, and another
simulation will be conducted at the new sample points, which may incur an
additional computational cost. To overcome this problem, an adaptive sampling
method is used to transform the one-shot sampling method into a sequential optimal
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sampling process. The main idea is to generate a small number of samples as the
initial sample set and sequentially add new sample points based on the information
obtained from the existing samples. After a certain stopping criterion is reached,
such as a maximum number of sample points or a predefined surrogate model
accuracy, the sampling process will end, yielding the final sample set.

In this chapter, four widely used one-shot sampling methods are introduced in
Sect. 6.1, and adaptive sampling methods for different kinds of surrogate models
are presented in Sect. 6.2. Some novel sampling methods specifically designed for
multi-fidelity surrogate models are also discussed.

6.1 One-Shot Sampling Methods

6.1.1 Uniform Design (UD)

Uniform design (UD) is a space-filling sampling method in which the selected
points are uniformly distributed throughout the design domain. Suppose that there
are m design variables over the domain Dm. The goal of UD is to select a set of n
points Sn ¼ fs1; s2; . . .; sng 2 Dm that are uniformly scattered in Cs. Let MðSnÞ
denote a measure of the nonuniformity of the samples; then, the goal of the sam-
pling process is to find the sample set S� that has the minimum MðSÞ. Let FðSÞ
denote the cumulative uniform distribution function over Cs, and let FnðSÞ denote
the empirical cumulative distribution function of the sample set Sn. The Lp-dis-
crepancy of the nonuniformity of Sn can be expressed as

DpðSnÞ ¼
Z
Cs

FnðSÞ � FðSÞj jpds
24 351=p ð6:1Þ

P ¼ 2 is widely used; in this case, the metric becomes the L2-discrepancy. Some
variants of this metric have also been developed, such as the centred L2-discrepancy
(Fang and Lin 2003) and the star discrepancy (Fang et al. 2000). For the imple-
mentation of UD, readers can refer to the following website: http://www.math.hkbu.
edu.hk/UniformDesign.

6.1.2 Monte Carlo Sampling (MCS)

The Monte Carlo sampling (MCS) method (also known as pseudo-random sam-
pling) was developed by Metropolis and Ulam (Morris et al. 1995). It is still a
popular sampling method for black-box functions despite its computational cost.

116 6 Sampling Approaches

http://www.math.hkbu.edu.hk/UniformDesign
http://www.math.hkbu.edu.hk/UniformDesign


www.manaraa.com

MCS generates pseudo-random numbers as samples and attempts to achieve space
filling of the design space through its random actions (Garud et al. 2017). However,
finite sets of pseudo-random numbers produced by various pseudo-random number
generators may exhibit clustering or leave many regions in the domain uncovered.
To solve this problem, stratified Monte Carlo sampling (SMCS) has been developed
to add an element of deterministic design into the purely chaotic MCS framework.
In SMCS, the design space is divided into non-random strata, and MCS is applied
to each stratum. MCS and SMCS have been extensively studied and applied in
various fields, e.g. mathematics (Evans and Swartz 2000), statistics (Robert and
Casella 2013) and engineering design (Mordechai 2011).

6.1.3 Latin Hypercube Design (LHD)

Latin hypercube design (LHD) was first proposed by McKay et al. (2000) in 1979,
and it has become one of the most well-known sampling methods for computational
experiments. The LHD sampling process is described as follows. For N design
variables, first construct an N-dimensional design domain 0; 1½ �N . Then, divide each
dimension into K bins of the same length 1

K, thus obtaining KN hypercubes. Finally,
an N-dimensional LHD of size K can be generated from the KN hypercubes. The K
samples can be arranged in a K � N matrix S ¼ fX1;X2; . . .;XKg, where Xi ¼
ðd1; d2; . . .; dNÞ ði ¼ 1; 2; . . .;KÞ is the vector of the design variables. For each
column of S, no two elements from that column may fall in the same bin. Therefore,
the LHD must balance all levels of each factor in one-dimensional space. This
condition on the placement of the elements in each column of L is known as the
non-collapsing design condition, which reduces the original design space and
allows the LHD to perform uniformly well over a range of dimensions. However,
the placement across the bins is still random; consequently, the LHD approach may
not ensure adequate space filling at all times. To enhance the performance of LHD,
several optimization algorithms have been applied to improve its space-filling
property. For an overview of these algorithms, readers can refer to Garud et al.
(2017).

6.1.4 Orthogonal Array Sampling

Orthogonal array sampling (OAS) has much in common with LHD. In particular, it
utilizes a process of random placement within bins similar to that of LHD. The
difference is that OAS results in uniform sampling in any T-dimensional projection
ðT\NÞ of an N-dimensional domain, whereas LHD is restricted to T ¼ 1. Thus,
OAS can be regarded as a generalization of LHD. The number of sample points per
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bin after projection is determined by the array index k, which has the following
formula:

k ¼ K � B�T ð6:2Þ

where K is the number of sample points, B is the number of bins per dimension and
T is the strength of the OAS procedure. For details of the OAS construction
process, readers can refer to Owen (1992), Hedayat et al. (2012). The sampling
process in OAS is determined by four predefined parameters (K;B; T and the
dimensionality of the design domain, N), which make it less flexible than LHD.
Moreover, the randomness in the selection of bins and the placement of samples
limits the practical application of OAS. These disadvantages of OAS have been
discussed by Viana et al. (2010).

6.2 Adaptive Sequential Sampling

In an adaptive sequential sampling method, new sample points are sequentially
added to the original sample set without knowledge of their spatial distribution. The
existing adaptive sequential sampling methods can be divided into three main types
in accordance with the types of surrogate models for which they are designed, i.e.
adaptive sequential sampling methods for single surrogate models, for ensembles of
surrogate models and for multi-fidelity surrogate models.

6.2.1 For Single Surrogate Models

The adaptive sampling methods for single surrogate models are fairly simple and
have enormous potential for virtually automatic implementation. Four commonly
used adaptive sequential sampling methods, namely, the entropy approach, the
mean square error (MSE) approach, the integrated mean square error (IMSE)
approach and the cross-validation approach, are briefly introduced in this
subsection.

6.2.1.1 Entropy Approach

Lindley (1956) introduced a measure of the amount of information provided by an
experiment based on Shannon’s entropy (Shannon 1948). The expected reduction in
entropy is used as a design criterion under the Bayesian framework (Currin et al.
1988, 1991). Shewry and Wynn (1987) proved that the problem of minimizing the
expected posterior entropy can be converted into the problem of maximizing the
prior entropy for a discrete design space.

118 6 Sampling Approaches



www.manaraa.com

Suppose that T is a finite set of N sites and that design site D, associated with n
samples, is evaluated to estimate the responses yðxÞ of T , where n\N. After the
actual responses at D are obtained, the knowledge of the predicted responses yðxÞ
depends on a normal distribution in ðN � nÞ dimensions. The predicted responses
yðxÞ are assumed to follow a Gaussian process (GP) of mean lD and covariance
matrix CD; the expression for such a GP is given in Sect. 6.2. In the entropy
approach, an attempt is made to select a new sample set D0 such that the amount of
uncertainty in the predicted responses yðxÞ is minimized.

For a GP, maximizing the amount of information obtained from the new sample
set D0 is equivalent to maximizing the determinant of the variance of yðxÞ. The
determinant of the unconditioned covariance matrix in the Gaussian prior case has
the following form:

CAþ s2HRHT
�� �� ¼ CAþ s2HRHT H

0 I

���� ����
¼ CA H

0 s2RHTC�1A Hþ I

���� ����
¼ CAj j s2RHTC�1A Hþ I

�� ��
¼ CAj j HTC�1A Hþ s�2R�1

�� �� s2R�� ��
ð6:3Þ

where CA is the covariance matrix of all sampling points in A ¼ D[D0. Because
r2R is fixed, the problem of maximizing the above equation can be transformed
into the problem of finding the design site D0 that maximizes

CAj j HTC�1A Hþ s�2R�1
�� �� ð6:4Þ

As the spatial distribution of the samples becomes increasingly diffuse, s2 !1,
the problem to be solved further simplifies to the following:

max CAj j HTC�1A H
�� �� ð6:5Þ

However, the optimal design is highly dependent on the chosen correlation
function and regression model, which are not usually determined before the anal-
ysis. One common pragmatic solution to this problem is to adopt weaker prior
information than is desired in the analysis, for example, choosing a cubic model
rather than a linear or quadratic polynomial model.
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6.2.1.2 Mean Square Error (MSE) Approach

For a GP model, the prediction MSE at a non-test point can be calculated as

s2ðxÞ¼r2½1:0� rTR�1rþðrTR�1F � f TÞðFTR�1FÞ�1ðrTR�1F � f TÞT � ð6:6Þ

The meaning of every symbol in this expression is the same as in previous
expressions.

In the MSE approach, the unobserved point with the largest prediction MSE is
selected as the next sequential point based on the existing GP model, i.e.

max s2ðxÞ ð6:7Þ

The MSE approach has been proven to be a special case of the entropy approach
in which only one new sample point is selected in each stage (Jin et al. 2002).

6.2.1.3 Integrated Mean Square Error (IMSE) Approach

The IMSE approach was proposed by Sacks et al. (1989) in 1989 for the design of
computational experiments. The idea of the IMSE criterion is to determine a new
sample set D0 by minimizing the IMSE based on the observed samples D and the
corresponding GP model, i.e.

min
Z

s2ðxÞdx ð6:8Þ

Note that the expression for calculating the MSE s2ðxÞ has a similar form to that
of Eq. (6.6), except that the observed data are replaced with A ¼ D[D0 here. The
hyper-parameters used to reflect the correlations between different points remain the
same as those in the existing GP model.

The IMSE approach differs from the MSE approach in two respects. First, the
IMSE approach uses the average MSE over the whole design space rather than the
MSE at a single point. Second, in the IMSE approach, the new sample set D0 is
determined based on both sample sets D0 and D, while in the MSE approach, it
depends only on the observed sample set D.

6.2.1.4 Cross-Validation Approach

The cross-validation approach was proposed by Jin et al. (2002) to handle surrogate
models that, unlike GP models, do not provide prediction errors, such as RBF
models. The cross-validation approach combines the leave-one-out (LOO) method
with a distance criterion. The main idea of this approach is to leave one or several
samples out and reconstruct the surrogate model using only the remaining samples.
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This process is repeated until all samples have been removed only once. Predicted
responses at point x will be provided by both the original surrogate model (ŷðxÞ)
and the updated surrogate model (ŷ�iðxÞ; ði ¼ 1; . . .; nÞ), where ŷ�iðxÞ denotes the
prediction of the updated surrogate model when the i-th sample in D is removed.
The difference between the responses predicted by the original model and the
updated surrogate model is calculated. Then, the mean square cross-validation error
at all samples is used to quantify the prediction error:

eðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1
ðŷ�iðxÞ � ŷðxÞÞ2

s
ð6:9Þ

Furthermore, to avoid clustering of the new sample points, Eq. (6.9) can be
modified to consider the distance between points:

max ½eðxÞ �minðdðx; xiÞÞ� ð6:10Þ

where minðdðx; xiÞÞ is the minimum distance between the next sequential sample
and the existing samples.

6.2.2 For Ensembles of Surrogate Models

The adaptive sequential sampling process for an ensemble of surrogate models is
somewhat more complex than that for a single surrogate model because it must
attempt to balance the prediction uncertainties of multiple different surrogate
models. Two sequential sampling criteria for an ensemble of surrogate models,
namely, the identification of regions of large uncertainty and the generalized
objective-oriented optimization criterion, are presented as follows.

6.2.2.1 Identification of Regions of Large Uncertainty

An important feature of a surrogate model is that it can provide prediction responses
in non-tested regions. However, prediction uncertainty is also introduced during the
model construction process, and different surrogate models may have different
uncertainties even if they are built with the same samples. An ensemble of surrogate
models can be utilized to locate regions of higher uncertainty (Goel et al. 2007).
Suppose that there are NSM surrogate models, the standard deviation of the pre-
diction responses at point x is defined as

srespðŷðxÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNSM

i¼1 ðŷiðxÞ � �yiðxÞÞ2
NSM � 1

s
ð6:11Þ
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where �yiðxÞ is the mean of the responses predicted by the NSM surrogate models,

that is, �yðxÞ ¼
PNSM

i¼1 ŷiðxÞ�NSM
and ŷiðxÞ is the response predicted by the i-th sur-

rogate model.
A large standard deviation of the prediction responses indicates that the surro-

gates are highly different in the corresponding region. Thus, additional samples
should be added in this region to reduce the prediction uncertainty. It should be
noted that although a high standard deviation indicates a high prediction uncer-
tainty, a low standard deviation cannot be assumed to imply a high prediction
accuracy. It may be the case that all surrogate models provide similar prediction
responses, resulting in a low standard deviation of the predictions, but that all
surrogate models simply behave similarly poorly in the corresponding region.

6.2.2.2 Generalized Objective-Oriented Optimization Criterion

Zhou et al. (2016) proposed an active learning multi-fidelity modelling approach
based on an ensemble of surrogate models and objective-oriented sequential sam-
pling. In this approach, kriging (Xiao et al. 2012), radial basis function
(RBF) (Zhou et al. 2015a, b) and support vector regression (SVR) (Clarke et al.
2005) models are fused to map the differences between the high-fidelity (HF) and
low-fidelity (LF) models. Furthermore, an active learning strategy is introduced to
make full use of the already-acquired information on the difference characteristics
between the HF and LF models.

Suppose there are computational codes at two levels (i.e. the HF model yh and
the LF model yl). The HF sample set is Dh ¼ fxh;1; xh;2; . . .; xh;nhg, and the corre-
sponding responses are yh ¼ fyhðxh;1Þ; yhðxh;2Þ; . . .; yhðxh;nhÞg. The discrepancy
between the HF and LF models can be calculated as

cðxh;iÞ ¼ yhðxh;iÞ � ylðxh;iÞ ð6:12Þ

To make full use of the prediction capabilities of different models, the scaling
function is replaced with an ensemble of surrogate models. Kriging, RBF and SVR
models are selected to form the ensemble because each type of model possesses
unique capabilities for handling problems with different characteristics: kriging
models are useful for solving nonlinear problems, the predictions of RBF models
are robust and SVR models are more accurate for problems of high dimensionality.

The ensemble is defined as the weighted average of these three surrogate models.
Thus, the scaling function can be expressed as

ĉðxÞ ¼
X3
j¼1

wjĉjðxÞ ð6:13Þ

where ĉðxÞ represents the predicted scaling function obtained from the ensemble
and the ĉjðxÞ ðj ¼ 1; 2; 3Þ are the scaling functions predicted using the kriging, RBF
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and SVR models, respectively. The detailed forms of these three types of surrogate
models have been presented in Chap. 2.

To quantify the prediction error, an error metric called the weighted cumulative
error is proposed. To avoid additional simulation costs, the LOO error is used to
determine the prediction accuracy based on the current sample set. The weight
factors are set in accordance with the distances between each predicted point and
the corresponding existing sample point, with a closer distance resulting in a larger
weight. The weighted cumulative error at prediction point x�h is estimated as

dðx�hÞ ¼
Xnh
i¼1

wi ĉ�iðx�hÞ � ĉðx�hÞ
�� �� ð6:14Þ

where ĉðx�hÞ represents the response predicted by the ensemble of surrogate models
based on the entire existing sample set Dh ¼ fxh;1; xh;2; . . .; xh;nhg, ĉ�iðx�hÞ denotes
the response predicted by the ensemble of surrogate models based on the sample set
Dh;�i ¼ fxh;1; . . .; xi�1; xiþ 1; . . .; xh;nhg and wi represents the weight factor reflecting
the distance between the predicted point and the sample point xh;i. wi is calculated
as

wi ¼ a�dðxh;i;x
�
hÞ

a�
Pnh

i¼1 �dðxh;i;x�hÞ
ð6:15Þ

where dðxh;i; x�hÞ represents the Euclidean distance and a is a constant coefficient
that is larger than 1.

Furthermore, to avoid sample clustering, a space-filling criterion is introduced:

x�h � xh;i
�� ��

2� b �meanðminð xh;i � xh;j
�� ��

2ÞÞ; 8xh;i; xh;j 2 Dh \ ði 6¼ jÞ ð6:16Þ

where b is the space-filling factor. A large value of b will cause the added sample
points to be more evenly distributed, whereas a small value of b may fail to prevent
the added sample points from clustering. Based on an investigation of numerous
mathematical examples, the value of b is suggested to be chosen from within the
interval 0:2; 0:5½ �.

The location of the next new sample point x�h is determined by solving a gen-
eralized objective-oriented optimization problem, which combines the error pre-
diction metric and the space-filling criterion. The generalized objective-oriented
optimization problem is expressed as follows:

max dðx�hÞ ¼
Xnh
i¼1

wi ĉ�iðx�hÞ � ĉðx�hÞ
�� ��

s:t: x�h � xh;i
�� ��

2� b �meanðminð xh;i � xh;j
�� ��

2ÞÞ; 8xh;i; xh;j 2 Dh \ ði 6¼ jÞ
ð6:17Þ
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The above optimization problem can effectively improve the prediction accuracy
of the model and guarantee a reasonable distance between the new sample point and
the existing samples. Genetic algorithm (Coello 2000) and a penalty function
method (Homaifar et al. 1994) have been widely used to find the global minimum
for this optimization problem.

6.2.3 For Multi-fidelity Models

In this section, sequential sampling strategies for the multi-fidelity framework are
introduced. For a multi-fidelity surrogate model, the selection of the sequential
sample points should consider not only the location of each sample but also the
level of the code to be run, which corresponds to the fidelity of the model. The
selection of the next sample point depends on both the computational cost and the
contribution of each code level to the prediction MSE of the final surrogate model.
Three sequential adaptive sampling methods are presented in this section: the
equivalent computational cost approach, which can provide the optimal combina-
tion of LF and HF samples according to the cost ratio between the HF and LF
models, and the one-point-at-a-time sequential co-kriging and batch sequential
co-kriging approach, which can be used to determine the location(s) and level(s) of
one newly added point or several newly added points, respectively, for a co-kriging
model of s levels.

6.2.3.1 Equivalent Computational Cost Approach

To solve the problems of sequentially selecting the locations of LF and HF samples
for a multi-fidelity surrogate model, and determining the optimal combination of LF
and HF samples given a fixed computational budget and cost ratio, Zhou et al.
(2017) proposed the equivalent computational cost approach. In the proposed
approach, a single HF sample or several LF samples with the same cost ratio are
selected to update a multi-fidelity surrogate model. The decision is made based on
which choice has the greater ability to improve the prediction accuracy.

In the equivalent computational cost approach, the multi-fidelity surrogate model
is built based on an additive LF GP model and a discrepancy GP model based on
the discrepancies between the LF and HF responses. The multi-fidelity surrogate
model can be expressed as

ŷhðxÞ ¼ ŷlðxÞþ d̂ðxÞ ð6:18Þ

where the GP models ŷlðxÞ and d̂ðxÞ are assumed to be independent.
The mean prediction of the multi-fidelity surrogate model can be obtained as
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mðŷhðxÞÞ ¼ EðŷlðxÞjylÞþEðd̂ðxÞjðyh � EðŷlðxÞjylÞÞÞ ð6:19Þ

and the corresponding prediction MSE has the following form:

s2ðŷhðxÞÞ ¼ s2ðŷlðxÞjylÞþ s2ðd̂ðxÞjðyh � EðŷlðxÞjylÞÞÞ ð6:20Þ

where s2ðŷlðxÞjylÞ and s2ðd̂ðxÞjðyh � EðŷlðxÞjylÞÞÞ are the prediction MSEs of the
LF GP model and the discrepancy GP model, respectively.

The average MSE over a set of points is used to quantify the prediction error of
the multi-fidelity surrogate model, which is calculated as

e0 ¼ 1
t

Xt
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðŷhðxiÞÞ

p
ð6:21Þ

where xi 2 Dt ¼ fx1; x2; . . .; xtg is a point in a randomly generated test set within
the design space. This error metric is equivalent to the Monte Caro IMSE if there
are sufficient test points.

Step 1: Estimate the predicted level of improvement with LF samples

The potential prediction improvement PILl with the addition of q LF samples,
where q is a predefined cost ratio between the HF and LF models, is estimated by
updating the multi-fidelity surrogate model. The q potential LF samples are added
sequentially at the location where the prediction error is highest for the previous
surrogate model. The multi-fidelity surrogate model is updated after the selection of
every potential sample point. The sequential criterion can be expressed as follows:

find x�l
max s2ðŷhðx�l ÞÞ
s:t: x�l � xl;i
�� ��� cluster threshold, xl;i 2 Dl

ð6:22Þ

The constraint is imposed to avoid clustering of the sample data. For every
existing sample, the minimum Euclidean distance with respect to the other sample
data is calculated. The clustering threshold is set to half of the average Euclidean
distance.

During the sequential sampling process, for efficiency, the predicted responses at
the selected LF sample points are treated as the actual responses when updating the
correlation matrix in the multi-fidelity surrogate model. Therefore, there is no need
to obtain the true responses at the LF sample points during the sequential sampling
process. The sequential criterion is applied by means of a genetic algorithm.

After the q LF samples have been sequentially added to the LF sample set Dl, the
updated average prediction MSE of the test set Dt is recalculated as follows:
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el ¼ 1
t

Xt
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðŷhðxiÞÞ

p
ð6:23Þ

The prediction improvement level PILl is defined as

PILl ¼ ðe0 � elÞ=e0 � 100% ð6:24Þ

The detailed process of obtaining PILl is presented in Algorithm 6.1.

Algorithm 6.1. Search the sequential LF samples and determine the PILl
Input: The multi-fidelity sampling data, cost ratio q, test set Dt and current prediction error e0
Output: The added LF samples and improvement level PILl
1 Begin

2 While ði� qÞ do
3 x�l;i  Find x�l;i to satisfy the sequential criterion

4 Dl  Update the LF input set by adding x�l;i into original Dl

5 ŷ�l;i  Obtain the prediction response at sampling point x�l;i
6 Yl  Update the LF sampling set by adding ŷ�l;i into Yl

7 ŷhðxÞ  Update the multi-fidelity surrogate model

8 i ¼ iþ 1

9 end while

10 el  Calculate the el for the updated multi-fidelity surrogate model

11 PILl  Calculate the prediction improvement level

12 end

Step 2: Estimate the predicted level of improvement with an HF sample

To locate the next HF sample point, the following optimization problem is utilized:

find x�h
max s2ðŷhðx�hÞÞ
s:t: x�h � xh;i
�� ��� cluster threshold, xh;i 2 Dh

ð6:25Þ

which is similar to the problem for the selection of LF samples except that the
distance constraint is replaced by the distance between the next sequential point x�h
and the samples in the HF sample set Dh.

A genetic algorithm is again used to solve the above optimization problem. The
multi-fidelity surrogate model will be updated after the location of the HF sample is
determined. In contrast to the addition of q LF samples, only one HF sample will be
added. Then, the average prediction MSE eh for the test set Dt will be calculated
based on the updated multi-fidelity surrogate model.

The prediction improvement level PILh is calculated as
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PILh ¼ ðe0 � ehÞ=e0 � 100% ð6:26Þ

Algorithm 6.2 presents a detailed illustration of the process of obtaining the
location of the HF sample and calculating the prediction improvement level PILh.

Algorithm 6.2. Search the sequential HF samples and determine the PILh
Input: The multi-fidelity sampling data, test set Dt and current prediction error e0
Output: The added HF sample and improvement level PILh
1 Begin

2 x�h;i  Find x�h;i to satisfy the optimization criterion

3 Dh  Update the HF input set by adding x�h;i into original Dh

4 ŷ�h;i  Obtain the prediction response at sampling point x�h;i
5 Yh  Update the HF sampling set by adding ŷ�h;i into Yh

6 ŷhðxÞ  Update the multi-fidelity surrogate model

7 eh  Calculate the eh for the updated multi-fidelity surrogate model

8 PILh  Calculate the prediction improvement level

9 end

Once PILl and PILh have been obtained, they are compared to determine
whether one HF sample or q LF samples should be added. If PILl [PILh, then the
LF samples are determined to contribute more to improving the prediction accuracy
of the multi-fidelity surrogate model, and the obtained q sample points will be
added to the LF sample set. Otherwise, the addition of one HF sample is preferred.
The equivalent computational cost approach can assist in constructing a
multi-fidelity surrogate model of high accuracy by identifying the optimal HF-to-LF
sample size ratio and the optimal sample locations.

6.2.3.2 One-Point-at-a-Time Sequential Co-Kriging

This criterion was proposed by Gratiet et al. (Gratiet and Cannamela 2012; Le
Gratiet and Cannamela 2015) for determining the locations of sequential sample
points for a co-kriging model of s levels. Code level 1 corresponds to the model that
is the most inaccurate, while code level s denotes the model with the highest
accuracy.

For a model of code level s, a new point xnew can be selected by solving the
following optimization problem:

xnew ¼ arg max
x

ksnsðxÞ ð6:27Þ

where ksðxÞ is the prediction variance at point x. Thus, the next simulation is
conducted at the point where the prediction MSE of the model is at its maximum.
For two models of successive code levels l� 1 and l, the sequential procedure is

6.2 Adaptive Sequential Sampling 127



www.manaraa.com

modified to determine at which of the two levels the next simulation should be
conducted.

For a co-kriging model constructed from GP models dl ðl ¼ 1; . . .; sÞ, the pre-
diction MSE of model dl at point x can be written as

klnlðxÞ ¼ q2l�1k
l�1
nl�1ðxÞþ r2dlðxÞ ð6:28Þ

and

r2dlðxÞ ¼ r2l 1� hlðxÞT rlðxÞT
� � 0 HT

l
Hl Rl

� 	�1
hlðxÞ
rlðxÞ

� 	 !
ð6:29Þ

where the meanings of the correlation matrix hlðxÞ, rlðxÞ, Hl and Rl are the same as
in Chap. 4. It can also be easily found that r2d1 ¼ k1n1ðx; xÞ. Then, the prediction
MSE of ŷlðxÞ ðl ¼ 1; . . .; sÞ can be expressed as

klnlðxÞ ¼
Xl
i¼1

r2diðxÞ
Yl�1
j¼i

q2j ð6:30Þ

where the kernels frlðx; x0; hlÞgi¼1;...;s are functions of the known hyper-parameters
fhlgl¼1;...;s, which represent the characteristic length scales of the kernels
(Rasmussen 2004) and are often calculated using the maximum likelihood esti-
mation method. The IMSE at level l can be written as

IMSEl ¼
Z
Q
klnlðxÞ dx ð6:31Þ

Then, the reduction in the IMSE when a new point xnew is added at level l can be
approximated as follows:

IMSEl
redðxnewÞ ¼

Xl
i¼1

ridiðxnewÞ
Yl�1
j¼i

q2j
Ym
k¼1

hki ð6:32Þ

where hl ¼ ðh1l ; h2l ; . . .; hml Þ. The first factor, ridiðxÞ
Ql�1

j¼i q
2
j , represents the contri-

bution of the prediction error of GP model di to the variance of the co-kriging
model. The second factor,

Qm
k¼1 h

k
i , reflects the influence of the new point xnew on

the GP model of level l. It has been proven that the reduction in �r2dl ¼
R
Q r2dlðxÞdx is

of the same order of magnitude as the product of r2diðxnewÞ and
Qm

k¼1 h
k
i .
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Suppose that the cost ratio between the models of code levels l and l� 1 is
Cl=l�1. The model of level l� 1 is more worthwhile to run when
Cl=l�1IMSEl�1

red ðxnewÞ[ IMSEl
redðxnewÞ. Otherwise, the model of level l (i.e. ylðxÞ)

will be selected. Based on this criterion, the one-at-a-time sequential co-kriging
process is specified as shown in Algorithm 6.3. This process can balance the effects
of both the computational cost and the contributions of models at different levels to
the co-kriging variance.

Algorithm 6.3 one-point-at-a-time sequential Co-kriging

1 Find xnew by maximizing ksns ðxÞ
2 for l ¼ 2; . . .; s do

3 if (r2dl ðxÞ\�r2dl ) then

4 Run yl�1ðxnewÞ end for

5 else

6 if (Cl=l�1IMSEl�1
red ðxnewÞ[ IMSEl

redðxnewÞ) then
7 Run yl�1ðxnewÞ end for

8 end if

9 end if

10 end for

11 if (l ¼ s) then

12 Run ylðxnewÞ
13 end if

Two models of successive levels l� 1 and l are evaluated in Algorithm 6.3. The
sequential procedure begins at levels one and two and then proceeds to levels two
and three, and so on. The loop stops if the model at level l� 1 is more promising
than the model at level l, and the responses y1ðxnewÞ; . . .; yl�1ðxnewÞ are evaluated.
The algorithm tends to estimate models of lower fidelity because the loop starts at
level 1 and proceeds to level s. There is no need to update the hyper-parameters
fhl; r2l gl¼1;...;s during the loop; they are estimated based on maximum likelihood

estimation when the loop stops. The purpose of the first test criterion, r2dlðxÞ\�r2dl , is
to check whether the point xnew is worthwhile to evaluate for the model of level l.
The second criterion, Cl=l�1IMSEl�1

red ðxnewÞ[ IMSEl
redðxnewÞ, is used to check which

model is more promising between code levels l� 1 and l. If the model at level l has
greater potential than the model at level l� 1, it will be compared with the model at
the following code level lþ 1. Algorithm 6.3 is repeated until the desired prediction
accuracy of the co-kriging model is reached or the computational budget is
exhausted.

Above, it is assumed that the computational burden monotonically increases
with the model level. However, this assumption can be abandoned; in this case, the
models at all levels need to be evaluated instead of stopping as soon as level l� 1 is
more promising than level l. In this situation, the most promising model can be
determined by minimizing the following quantity:
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Ys
i¼l

Ciþ 1=iIMSEi
redðxnewÞ ð6:33Þ

where Csþ 1=s ¼ 1. This quantity represents the potential reduction in the prediction
uncertainty at code level l given the same computational cost as that of obtaining a
sample at the highest level. It should be noted that the MSE may not reflect the true
error of the model; in this case, the cross-validation error can be used. For more
details, readers can refer to Le Gratiet and Cannamela (2015).

6.2.3.3 Batch Sequential Co-Kriging

In this section, the sequential sampling process for a co-kriging model is extended
to consider the addition of q points at a time (Gratiet and Cannamela 2012; Le
Gratiet and Cannamela 2015). The principle is demonstrated as follows. ql new
samples are selected for the model of the l - th fidelity level; the details of the
method used to select the samples are shown in Algorithm 6.4. Then, these points
are assumed to be known for models yl�1ðxÞ; . . .; y1ðxÞ, and ql�1 new sample points
for model yl�1 are determined using the same method. It should be noted that the
co-kriging variances are computed independently of the observations, and there is
no need to evaluate yl�1ðxÞ; . . .; y1ðxÞ at the ql new sample points. Next, the
sequential process loops from level l� 2 to level 1. Finally, a total of

Pl
i¼j qi points

are added to level j during the loop. The locations of these points fq1; q2; . . .; qlg are
determined as those that offer the largest potential uncertainty reduction subject to a
predefined computational budget limitation. The total computational burden here is

T¼
Xl

j¼1
Xl

i¼j qitj ð6:34Þ

where tj ðj ¼ 1; . . .; sÞ represents the computational cost of evaluating
yjðxÞ ðj ¼ 1; . . .; sÞ. The procedure for adding q points at a time is shown in
Algorithm 6.4.

Algorithm 6.4 ðqiÞi¼1;::;s points at-a-time sequential co-kriging

1 Allocate fq1; . . .; qlg such that
Pl

j¼1
Pl

i¼j qitj is equal to predefined budget T

2 Set ðNi
MCMCÞi¼1;...;t for the Metropolis–Hastings (M-H) procedures

3 Generate Nl
MCMC samples with respect to klnlðxÞ

4 Solve Nl ¼ maxN � ql minx2ðCl
iÞi s

2
l ðxÞ to find the Nl cluster ðCl

iÞi¼1;...;Nl

5 Select from ðCl
iÞi¼1;...;Nl the ql points ðxlnew;iÞi¼1;...;ql by maximizing klnl ;adjðxÞ

6 for m ¼ l� 1; . . .; 1 do

7 Compute km
nm þ

Pl

i¼mþ 1
qi
ðxÞ after adding the new points ððx jnew;iÞi¼1;...;qj Þj¼mþ 1;...;l

(continued)
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(continued)

Algorithm 6.4 ðqiÞi¼1;::;s points at-a-time sequential co-kriging

8 Generate Nm
MCMC samples with respect to km

nm þ
Pl

i¼mþ 1
qi
ðxÞ

9 Find the Nm cluster centres ðCm
i Þi¼1;...;Nm such that Nm ¼ maxN � qm minx2ðCm

i Þi k
m
nm þ

Pl

i¼mþ 1
qi
ðxÞ

10 Select from ðCm
i Þi¼1;...;Nm the qm points ðxmnew;iÞi¼1;...;qm by maximizing km

nm þ
Pl

i¼mþ 1
qi ;adj
ðxÞ�

11 end for

The term km
nm þ

Pl

i¼mþ 1
qi
ðxÞ in Algorithm 6.4 represents the prediction MSE of

Ym
nmðxÞ conditioned on ððx jnew;iÞi¼1;...;qjÞj¼mþ 1;...;l when the hyper-parameters

ðr2i Þi¼1;...;l and ðhiÞi¼1;...;l are treated as known. Moreover, km
nm þ

Pl

i¼mþ 1
qi
ðxÞ� is

the adjustment to km
nm þ

Pl

i¼mþ 1
qi
ðxÞ when leave-one-out cross-validation (LOO-CV)

is adopted. The expression for km
nm þ

Pl

i¼mþ 1
qi
ðxÞ� has the following form:

km
nm þ

Pl

i¼mþ 1
qi
ðxÞ� ¼

Xl
i¼1

r2diðxnewÞ� 1þ
Xni

j¼1
ðeLOO�CV ;iðxi;jÞ � q̂i�1eLOO�CV ;i�1ðxi�1;jÞÞ2
s2LOO�CV ;iðxi;jÞ � q̂2i�1s

2
LOO�CV ;i�1ðxi�1;jÞ

 !
�
Yl�1
j¼i

q2j
Ym
k¼1

hki

ð6:35Þ

where eLOO�CV ;iðxi;jÞ and s2LOO�CV ;iðxi;jÞ represent the LOO-CV error and variance,
respectively. A Gaussian jumping distribution with the corresponding standard
deviation is used for the Metropolis–Hastings procedure, and the acceptance rate is
approximately 30% (Roberts et al. 1997). The specific definitions of eLOO�CV ;iðxi;jÞ
and s2LOO�CV ;iðxi;jÞ are provided as follows.

For model level l, the models at lower levels are considered to satisfy
Dl	Dl�1	 � � � 	D1. nj is defined as the index of Dj corresponding to the i-th point
xl;i of Dl, with 1� j� l. The LOO-CV error eLOO�CV ;lðxi;jÞ at level l and point xl;i
can be calculated as follows:

eLOO�CV ;lðxl;iÞ ¼ q̂l�1eLOO�CV ;l�1ðxl;iÞþ R�1l yl � Hl
q̂l�1
b̂l

� 	� 	
 �
nl

= R�1l

� 
nl;nl

ð6:36Þ

where

q̂l�1
b̂l

� 	
¼ ðHT

l;�nlKlHl;�nlÞ�1HT
l;�nlKlyl;�nl and

Kl ¼ R�1l

� 
�nl;�nl� R�1l

� 
�nl;nl R

�1
l

� 
nl;�nl= R�1l

� 
nl;nl
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Similarly, the LOO-CV variance s2LOO�CV ;lðxi;jÞ can be computed as follows:

s2LOO�CV ;lðxl;iÞ ¼ q̂2l�1s
2
LOO�CV ;l�1ðxl;iÞþ s2dl;�nl= R�1l

� 
nl;nl
þ 1l ð6:37Þ

with 1l ¼ u2l HT
l;�nlKlHl;�n

� ��1
, ul ¼ R�1l Hl

� 
ns
= R�1l

� 
nl;nl

and

r2l;�nl ¼
yl;�nl � Hl;�nl

q̂l�1
b̂l

� 	� 	T

Ks yl;�nl � Hl;�nl
q̂l�1
b̂l

� 	� 	
nl � pl � 2

ð6:38Þ

where Hl;�nl ¼ yl;�nl Fl;�nl½ �.
Moreover, the following quantity is considered:

IMSEred;q ¼
Xl
i¼1

X
r¼1;...;qi

r2diðxinew;rÞ
Yl�1
j¼i

q2j
Ym
k¼1

hki ð6:39Þ

The allocation fq1; . . .; qlg is determined by solving the following optimization
problem:

fq1; . . .; qlg ¼ arg max
fq1;...;qlg

IMSEred;q such that
Xl

j¼1
Xl

i¼j qitj ¼ T ð6:40Þ

This optimization problem is usually very complex to solve, and suboptimal
solutions are often adopted. The possible allocations can be fully explored when the
number of code levels and the budget are relatively small.
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Chapter 7
Surrogate-Model-Based Design
and Optimization

7.1 Surrogate-Model-Based Deterministic Design
Optimization

Since most engineering design problems involve time-consuming simulations and
analysis, surrogate models are often used for fast calculations, sensitivity analysis,
exploring the design space and supporting optimal design (Sacks et al. 1989;
Gutmann 2001; Hsu et al. 2003; Clarke et al. 2005; Martin and Simpson 2005;
Chen and Cheng 2010; Sun et al. 2011; Kitayama et al. 2013; Long et al. 2015).
Surrogate models are also widely used in design optimization (Gu 2001; Simpson
et al. 2004; Wang and Shan 2007; Forrester and Keane 2009; Viana et al. 2014).
The easiest way is to construct surrogate models in advance for time-consuming
objective functions and constraints. Then, a heuristic optimization algorithm (such
as a genetic algorithm (GA) or particle swarm optimization) is used to solve the
optimization problem based on the surrogate models (Jin 2011; Tang et al. 2013).
During this process, each surrogate model remains fixed and acts as a fast simulator
for the corresponding objective function or constraint. The accuracy of the final
optimal solution depends on the accuracy of the constructed surrogate models.
Since the optimal solution to the original problem is not known in advance, the
designer must ensure that each surrogate model has a high prediction accuracy
throughout the entire design space to ensure that the corresponding optimal solution
will be close to the true optimal solution to the original problem. Consequently,
surrogate model construction requires the calculation of a large number of sample
points.

In addition, there is another way to construct surrogate models by means of
surrogate-assisted meta-heuristic algorithms (Jin et al. 2002; Jin 2005; Le et al.
2013; Regis 2013; Mlakar et al. 2015; Akhtar and Shoemaker 2016), which
dynamically update the surrogate models throughout their evolutionary processes.
The surrogate models in surrogate-assisted meta-heuristic algorithms are used for
two main purposes: (1) to guide the generation of the initial population and to
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perform cross-mutation operations and (2) to approximate the fitness values of
some individuals or populations. During the evolutionary process, the surrogate
models are updated with the true responses of the new individuals. In
surrogate-assisted meta-heuristic algorithms, surrogate models are used only as
auxiliary tools for prediction and approximation during the evolutionary process.
The process of a surrogate-assisted meta-heuristic algorithm is still based on the
framework of traditional meta-heuristic algorithms, and optimization is carried out
through the evolution of the population. Compared with traditional meta-heuristic
algorithms, surrogate models can reduce the need for time-consuming simulations.
However, since the optimization process is still based on the evolution of popu-
lation, there is a limit on the reduction in the time consumption for simulations that
can be achieved by using surrogate models. That is, a surrogate-assisted
meta-heuristic algorithm still requires large numbers of calculations of the objec-
tive function and constraints to obtain a reliable optimal solution.

The third way to construct surrogate models is to use a surrogate-based opti-
mization (SBO) algorithm (Schonlau 1997; Jones et al. 1998; Gary Wang et al.
2001; Jones 2001; Wang 2003; Wang et al. 2004; Regis and Shoemaker 2005; Shan
and Wang 2005; Regis and Shoemaker 2007; Forrester et al. 2008; Sharif et al.
2008; Regis and Shoemaker 2013; Yondo et al. 2018). Such algorithms are com-
pletely different from meta-heuristic algorithms. They rely only on the information
provided by the surrogate model to explore and optimize the original problem by
continuously supplementing and updating the sample points. An SBO algorithm is
very cautious in selecting each updated point. The information of the surrogate
model is usually fully explored and analysed to balance the relationship between the
global search (adding updated sample points in areas with few sample points) and
the local search (adding updated sample points near the current optimal solution).
Finally, the point with the most potential is selected as the next sample point.
Because SBO algorithms can make full use of the information of the surrogate
model and fully exploit the potential for improvement provided by each new sample
point, they often require fewer calculations of the objective function and constraints
than surrogate-assisted meta-heuristic algorithms to find the optimal solution of the
original problem. Consequently, scholars have shown great interest in research on
SBO algorithms: the types of surrogate models used, the infill criteria for selecting
updated sample points, the algorithm procedures, etc. The general flowchart of an
SBO algorithm is shown in Fig. 7.1. A small number of initial sample points are
generated to construct the initial surrogate model at first. New sample points are
selected based on certain specific infill criteria to update the surrogate model until
the iterative process is terminated. The number of sample points and the surrogate
model itself are constantly changing throughout the iterative process.

In SBO algorithms, the selection of the updated sample points directly affects the
final optimization results and computational efficiency. The existing researches
indicate that the updated sample points can be selected based on several commonly
used infill criteria, which can be divided into three main categories (Sóbester et al.
2005; Ponweiser et al. 2008; Liu et al. 2012; Parr et al. 2012):

136 7 Surrogate-Model-Based Design and Optimization



www.manaraa.com

(1) Local infill criteria:

The most commonly used local infill criterion is to minimize the response surface
criterion. The local exploitation with such a criterion is excellent, and the speed of
convergence is fast, but the optimization process can easily fall into a locally
optimal solution. However, this criterion can be adapted for application to any
surrogate model.

(2) Global infill criteria:

The global exploration performance of global infill criteria is good. However, their
ability to drive local exploitation is weak. The accuracy of the final optimal solution
cannot be guaranteed, and the overall number of calculations is large.

Fig. 7.1 The flowchart of the SBO algorithm
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(3) Infill criteria balancing global exploration and local exploitation:

Such criteria can be regarded as attempting to fill in the gaps between existing
sample points to build a surrogate model that is accurate throughout the design
space. For example, a kriging model yields not only the prediction response value at
a design point but also the corresponding prediction variance. The prediction
variance can be used to represent the uncertainty of the prediction of the kriging
model at this design point. It also describes the sparseness of the sample points in
the neighbourhood where the design point is located. The larger the prediction
variance is, the fewer sample points there are in the neighbourhood of the current
design point, and the more inaccurate the kriging model is for predictions in this
region. Thus, the number of sample points can be appropriately increased in this
region to realize more effective exploration of the region with the kriging model.
Since kriging models can provide both prediction response values and variances at
the design points, scholars have proposed a variety of infill criteria to balance the
relationship between global exploration and local exploitation.

In this chapter, three different kinds of commonly used infill criteria balancing
the relationship between global exploration and local exploitation are introduced:
the expected improvement criterion (Alexandrov et al. 1998; Sasena 2002; Huang
et al. 2006b; Forrester et al. 2006; Kleijnen et al. 2012; Xiao et al. 2012, 2013;
Chaudhuri and Haftka 2014), the probability of improvement (PI) criterion (Keane
2006; Viana and Haftka 2010; Couckuyt et al. 2014) and the lower confidence
bound (LCB) criterion (Laurenceau et al. 2010; Srinivas et al. 2012; Desautels et al.
2014; Zheng et al. 2016). In addition, some improved forms of these infill criteria
that can be used to solve constrained optimization problems are also demonstrated
(Audet et al. 2000; Sasena et al. 2002; Basudhar et al. 2012). We will use a kriging
model as an illustration. Figure 7.2 shows the kriging model for the following
one-dimensional function (Forrester et al. 2008): f xð Þ ¼ 6x� 2ð Þ2sin 12x� 4ð Þ.
The sample points are selected to be [0.0, 0.333, 0.667, 1.0]. The solid red line
represents the true function. The four sample points are denoted by dots. The

Fig. 7.2 Kriging model for a
one-dimensional function
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dashed black line represents the response values predicted by the kriging model,
and the blue dotted line represents the prediction error. In Fig. 7.2, the left axis is
used to represent the values of the true function, the sample points and the
responses predicted by the kriging model, while the right axis shows the prediction
error of the kriging model. The kriging predictor accurately passes through each
sample point, and the error at each sample point is zero, indicating that the kriging
model is an interpolation model. The kriging predictor provides not only the pre-
dicted response value ŷðxÞ at any point but also the corresponding prediction error
sðxÞ. By virtue of these beneficial characteristics of kriging models, the trusted
region for each prediction response value is known. Additionally, kriging models
can be widely used in surrogate-model-assisted design optimization.

7.1.1 Expected Improvement Criteria

The expected improvement (EI) criterion was first proposed by Schonlau and Jones
(Schonlau 1997; Jones et al. 1998) for the sequence update algorithm. Additionally,
the constrained expected improvement (CEI) criterion introduced in Schonlau’s
doctoral dissertation (Schonlau 1997) can be used to solve constrained optimization
problems. The EI criterion is one of the most widely studied infill criteria for
kriging models that are used to approximate time-consuming objective functions
and constraint functions. The prediction response values and errors provided by a
kriging model are useful in determining the update criteria (the EI criterion and the
CEI criterion).

7.1.1.1 The Unconstrained Expected Improvement (EI) Criterion

The EI criterion is mainly used to solve time-consuming unconstrained optimization
problems. Consider the following unconstrained optimization problem:

min f ðxÞ
s:t: xli � xi � xui ; i ¼ 1; 2; . . .; n

x ¼ x1; x2; . . .xn½ �
ð7:1Þ

where n is the number of design variables and xli and xui are the lower and upper
bounds, respectively, on design variable xi, where xli\xui . Since a meta-heuristic
algorithm would require thousands of calculations of the objective function, such an
algorithm cannot be directly used to solve the original problem. Therefore, a kriging
model is used to approximate the objective function of the original problem. Based
on the kriging prediction and the error function, the EI criterion is constructed. In
each iteration, the next sample point is selected in accordance with the EI criterion
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and the design space is searched by considering the new sample point, and finally,
the optimal solution to the original problem is found.

The EI criterion is essential since it determines the selection of each new sample
point and the search direction of the optimization process. For any unobserved point
x, the kriging model provides a prediction response value ŷðxÞ and its standard
deviation sðxÞ. The main problem in designing the optimization process is deter-
mining how to use these two pieces of information provided by the kriging model to
select the most promising point as the next sample point. One possibility is to select
the point with the minimum predictive response value ŷðxÞ as the next sample point;
in this way, the area near the current optimal solution can be fully explored to
further improve the current optimal solution. However, this kind of search will
remain concentrated in a local area, which may cause the search process to become
trapped near a certain locally optimal solution to the original problem. Another
possibility is to select the point with the maximum standard deviation sðxÞ as the
next sample point; in this way, unknown areas can be explored to the greatest
possible extent, and the next sample point will be selected in an area where the
sample points are sparse, thus allowing the search process to escape from the
current local region. However, this kind of search is very slow, and a large number
of supplementary sample points will be required to find the optimal solution to the
original problem.

The EI criterion balances and synthesizes these two search modes (local and
global search). Any unobserved point x can be regarded as a random variable with a
normal distribution with a mean of ŷðxÞ and a standard deviation of sðxÞ:

YðxÞ�N ŷðxÞ; sðxÞð Þ ð7:2Þ

Suppose that the minimum value of the objective function among the current
sample points is fmin, which is the current optimal solution. Then, the improvement
with respect to the current optimal solution that is achieved at the unobserved point
x can also be regarded as a random variable:

IðxÞ ¼ max fmin � YðxÞ; 0ð Þ ð7:3Þ

In probability theory, the expected value reflects the average value of a random
variable. To evaluate the improvement, we can take the expected value of the
corresponding variable as follows:

EIðxÞ ¼ E max fmin � YðxÞ; 0ð Þ½ �

¼
Z fmin

�1
fmin � Yð Þ 1ffiffiffiffiffiffi

2p
p

sðxÞ
exp � ŷðxÞ2

2sðxÞ2

 !
dY

ð7:4Þ
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By solving Eq. (7.4), the following expression for the EI function can be
obtained:

EIðxÞ ¼ fmin � ŷðxÞð ÞU fmin � ŷðxÞ
sðxÞ

� �
þ sðxÞ/ fmin � ŷðxÞ

sðxÞ

� �
ð7:5Þ

where / �ð Þ and U �ð Þ represent the probability density function and the cumulative
distribution function, respectively, of the standard normal distribution. It can be
seen from Eq. (7.5) that the EI function is a nonlinear combination of ŷðxÞ and sðxÞ.
The first term of the EI function increases as ŷðxÞ decreases, so it tends to select a
point with a smaller predicted response value as the next sample point. The second
term of the EI function increases as sðxÞ increases, so it tends to select a point with a
larger prediction variance as the next sample point. The EI function thus considers
both the smallest value of the mean and the region with the largest standard
deviation, thereby automatically balancing the exploration and development capa-
bilities of the optimization process by considering both local and global search
criteria.

Figure 7.3 shows the EI function for the previously introduced one-dimensional
function. The solid line represents the true function, the dots represent the four
sample points, the dashed line represents the kriging model built for this function,
and the dotted line represents the EI function. The left axis shows the values of the
true function, the sample points and the kriging model, while the EI function is
represented on the right axis. In, the EI function is a continuous function. The
values of the EI function at the sample points are 0, while the values at unobserved
points are greater than 0.

By taking the partial derivatives of EIðxÞ with respect to ŷðxÞ and sðxÞ,
respectively, we obtain

@EIðxÞ
@ŷðxÞ ¼ �U

fmin � ŷðxÞ
sðxÞ

� �
\ 0 ð7:6Þ

Fig. 7.3 EI function for the
one-dimensional function
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and

@EIðxÞ
@sðxÞ ¼ /

fmin � ŷðxÞ
sðxÞ

� �
[ 0 ð7:7Þ

Equations (7.6) and (7.7) show that the EI function is monotonically decreasing
in ŷðxÞ and monotonically increasing in sðxÞ. Accordingly, two characteristics of
the EI function can be derived as follows. For any two unobserved points xð1Þ and
xð2Þ, the response values predicted by the kriging model are ŷ xð1Þ

� �
and ŷ xð2Þ

� �
,

respectively, and the predicted standard deviations of the kriging model are s xð1Þ
� �

and s xð2Þ
� �

, respectively. With this notation, the following characteristics of the EI
function can be described:

(1) If s xð1Þ
� �

¼ s xð2Þ
� �

and ŷ xð1Þ
� �

\ŷ xð2Þ
� �

are satisfied, then EI xð1Þ
� �

[EI xð2Þ
� �

.

(2) If s xð1Þ
� �

[ s xð2Þ
� �

and ŷ xð1Þ
� �

¼ ŷ xð2Þ
� �

are satisfied, then EI xð1Þ
� �

[
EI xð2Þ
� �

.

In other words, when the next sample point is selected based on the EI criterion,
if the standard deviations of the predictions at two points are the same, then the
point with the smaller predicted response value will be selected. Similarly, if two
points have the same predicted response value, then the point with the larger
standard deviation will be selected. This property is called the monotonicity of the
EI criterion.

Since a kriging model is an interpolation model, the standard deviations of the
model predictions at all sample points are zero, i.e. s xðiÞ

� �
¼ 0; i ¼ 1; 2; . . .;N.

From Eq. (7.5), we know that when sðxÞ ¼ 0, EIðxÞ ¼ 0. That is, the values of the
EI function at the sample points are equal to zero. If x is an unobserved point, then
the standard deviation of the prediction of the kriging model at this point is greater
than zero, i.e. sðxÞ[ 0. From Eq. (7.5), we know that when sðxÞ[ 0, EIðxÞ[ 0;
this means that the values of the EI function at unobserved points are greater than
zero. Therefore, when the point with the maximum value of the EI function is
selected as the next sample point in each iteration, the selected points are guar-
anteed not to be sample points (because the values of the EI function at all sample
points are zero, whereas the values at all unobserved points are greater than zero).
Thus, the new sample points selected based on the EI function must be different
from the previously selected sample points. According to the convergence criteria
of Torn and Zilinskas (Törn and Zilinskas 1989), the selection process based on the
EI function will drive the optimization process to converge to the optimal solution
to the original problem. This property is called the convergence of the EI criterion.
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7.1.1.2 Procedures for the SBO Algorithm Driven by the EI Criterion

The procedures for the SBO algorithm driven by the EI criterion are shown in
Algorithm 7.1. This is a typical two-step SBO algorithm: the first step is to apply a
design of experiments method to generate the initial sample points, and the second
step is to iterate the loop until the stopping criterion is satisfied. Each iteration of the
SBO algorithm consists of three steps: first, constructing the kriging model based on
the set of sample points, as shown in line 2 of Algorithm 7.1; second, selecting the
point with the largest value of the EI function as the new sample point, as shown in line
3; and third, calculating the true response value at the new sample point and adding
this new point into the set of sample points, as shown in lines 4–8. The SBO algorithm
finds the optimal solution by continuously selecting and calculating new sample
points. It does not consider the overall accuracy of the kriging model. Instead, the
kriging model is used to assist in the optimization procedure. After all, finding the
optimal solution to the original problem is the ultimate goal of the SBO algorithm.

Figure 7.4 shows the process of searching based on the EI criterion for the
one-dimensional function considered as an example here. Each row represents one
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round of iteration. The first row represents the initial state, and the optimal solution
to the one-dimensional function is found through six iterations. In the left column,
the red solid lines represent the true one-dimensional function, the black dashed
lines represent the constructed kriging models, the blue dots indicate the existing
sample points, and the pink dots denote the newly added sample points. In the right
column, the black solid lines represent the EI function, and the pink dots are the
points with the maximum value of the EI function, that is, the new sample points
selected based on the EI criterion. The blue dots in Fig. 7.4a are the four initial
sample points, and the dotted line represents the initial kriging model. After the

Fig. 7.4 The iterative process driven by the EI criterion for the one-dimensional function
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initial kriging model is constructed, the EI function of the initial kriging model (the
black solid line in Fig. 7.4b) is used to identify the point with the maximum value
of the EI function (the pink dot in Fig. 7.4b), which is chosen as the next sample
point. Then, the true response value at the chosen sample point is calculated, and

Fig. 7.4 (continued)
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this point is added to the set of sample points. Then, the second round of iteration
begins. The kriging model is reconstructed (the black dashed line in Fig. 7.4c)
based on the updated set of sample points including the newly added sample point,
and the new EI function is obtained (the black solid line in Fig. 7.4d). The second
sample point is selected as the one that maximizes the EI function (the pink dot in
Fig. 7.4d). The SBO algorithm iteratively searches the design space in this way and
finally finds the optimal solution to the one-dimensional function after six iterations.

This SBO algorithm is quite different from derivative-based or meta-heuristic
optimization algorithms. The SBO algorithm does not search based on a specific
optimization path, as a derivative-based optimization algorithm does. Instead, the
design space is searched under the guidance of the EI function. There is no cor-
relation between two sequential search points (newly added sample points), and the
search process often jumps from one region to another, thus preventing it from
falling into a local optimum. In addition, the SBO algorithm does not search based
on the evolution of a population, as a meta-heuristic algorithm does, but rather
searches for the optimal solution to the original problem by finding and adding a
single point in each iteration. There are no inheritance or mutation relationships
between the search points in two successive iterations; instead, the search points are
strictly selected on the basis of the maximum value of the EI function.
Derivative-based optimization algorithms often use only the derivative information
from the current local region, while meta-heuristic optimization algorithms often
use only the information of the current population. By contrast, each selection
process in the SBO algorithm makes full use of the information from each sample
point. Based on all of the sample points, a kriging model is constructed to
approximate the original problem, and the available information about the original
problem is optimized based on the EI function.

In addition, the EI function is an analytical expression, and it is easily and
quickly calculated. In each iteration of the SBO algorithm, the EI function needs to
be optimized to select the next sample point. Since the EI function is usually a
highly nonlinear function with multiple peaks, it is often necessary to use a
meta-heuristic optimization algorithm to find its maximum value, which requires
thousands of calculations of the EI function. However, since the EI function is
easily and quickly calculated, the whole optimization process takes only a few
seconds to a few minutes. Thus, compared to time-consuming simulations, the
optimization of the EI function requires a negligible amount of time.

In general, an SBO algorithm is suitable for solving time-consuming opti-
mization problems. Compared with derivative-based optimization methods, an SBO
algorithm has better global search capabilities and does not require the derivative
information of the original problem. In addition, compared with meta-heuristic
optimization algorithms, an SBO algorithm requires only a small number of cal-
culations of the objective function, which can greatly reduce the optimization time
and improve the efficiency of optimization. In fact, an SBO algorithm is a general
optimization method and can also be used to solve non-time-consuming
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optimization problems. For non-time-consuming optimization problems, however,
the greatest advantage of the SBO algorithm (requiring only a small number of
calculations of the objective function) provides no obvious benefit, and it may be
more appropriate to use a meta-heuristic algorithm.

7.1.1.3 The Constrained Expected Improvement (CEI) Criterion

The EI criterion is mainly used for unconstrained optimization problems. However,
most practical optimization problems contain one or more constraints. A single-
objective optimization problem with constraints can be described as follows:

min f ðxÞ
s:t: gjðxÞ� 0; j ¼ 1; 2; . . .; c

xli � xi � xui ; i ¼ 1; 2; . . .; n

x ¼ x1; x2; . . .xn½ �

ð7:8Þ

where c is the number of constraint functions. In this chapter, it is assumed that all
constraint functions can be expressed as inequality functions of the form gðxÞ� 0.
For example, an inequality constraint function of the form gðxÞ� 0 can be trans-
formed into �gðxÞ� 0 by multiplying by −1, and an equality constraint function of
the form gðxÞ ¼ 0 can be represented by two inequality constraint functions,
gðxÞ� � e and gðxÞ� þ e, where e is a small positive number.

It is also assumed that both the objective function f ðxÞ and the constraint
functions gjðxÞ need to be calculated by means of time-consuming simulations. For
constraint functions that are analytical expressions and quick to calculate, they can
be directly considered when maximizing the EI function. The optimization problem
of selecting the next sample point can be transformed from minimizing the
unconstrained EI function to minimizing the constrained EI function:

min EIðxÞ
s:t: gjuðxÞ� 0; ju ¼ 1; 2; . . .; u

x ¼ x1; x2; . . .xn½ �
ð7:9Þ

where EIðxÞ is the unconstrained EI function, gju represents the ju-th constraint
function with an analytical expression, and u denotes the total number of constraint
functions with analytical expressions. By contrast, if the calculation of a constraint
function involves time-consuming simulations, that constraint function cannot be
directly considered. Instead, a kriging model needs to be constructed for the con-
straint function. Thus, in the optimization process, the number of time-consuming
simulations of constraint functions can be significantly reduced. An optimization

7.1 Surrogate-Model-Based Deterministic Design Optimization 147



www.manaraa.com

problem for which both the objective function and one or more constraint functions
involve time-consuming simulations can be called a time-consuming constrained
optimization problem.

Schonlau proposed the CEI criterion based on the consideration of time-consuming
constraint functions. After the initial sample points are generated, it is necessary to
calculate both the true response values yð1Þ; yð2Þ; . . .; yðNÞ

� �
of the objective function at

the sample points and the true response values gð1Þj ; gð2Þj ; . . .; gðNÞj

n o
j ¼ 1; 2; . . .; c, of

each constraint function at the sample points.When constructing the krigingmodels, it
is necessary to construct a kriging model for both the objective function and each
constraint function. For any unobserved point x, the predicted response value of the
objective function is ŷðxÞ, and the predicted error is sðxÞ. The predicted response value
of the j-th constraint function is ĝjðxÞ, and the predicted error is ejðxÞ. That is, the
objective function is a random variable that satisfies.

YðxÞ�N ŷðxÞ; sðxÞð Þ ð7:10Þ

The j-th constraint function is also a random variable and satisfies

GjðxÞ�N ĝjðxÞ; ejðxÞ
� �

; j ¼ 1; 2; . . .; c ð7:11Þ

Schonlau defines an improved function that satisfies all constraint functions as
follows:

IðxÞ ¼ max f �min � YðxÞ; 0
� �

; if GjðxÞ� 0 for j ¼ 1; 2; . . .; c
0 otherwise

	
ð7:12Þ

where f �min is the minimum value of the objective function in the current set of sample
points that satisfies all constraint functions. The physical meaning of the improved
constraint function is that when x satisfies all constraint functions, the value of the
improved function is max f �min � YðxÞ; 0

� �
, and when x does not satisfy all constraint

functions, i.e. at least one constraint function is not satisfied, the value of the improved
function is 0. It is assumed that the objective function YðxÞ and each constraint
functionGjðxÞ are independent of each other. Thus, the CEI criterion is formulated as

CEIðxÞ ¼ EIðxÞ 	
Yc
j¼1

Pr GjðxÞ� 0
� �

¼ fmin � ŷðxÞð ÞU fmin � ŷðxÞ
sðxÞ

� �
þ sðxÞ/ fmin � ŷðxÞ

sðxÞ

� �
 �
	
Yc
j¼1

U
�ĝjðxÞ
ejðxÞ

� �
ð7:13Þ
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where EIðxÞ is the EI function without considering the constraint functions and
Pr GjðxÞ� 0
� �

is the probability that the point x satisfies the j-th constraint function.
Thus,

Qc
j¼1 Pr GjðxÞ� 0

� �
is the probability that the point x satisfies all constraint

functions. Usually, the probability that the point x satisfies all constraint functions is
called the probability of feasibility (PoF):

PoFðxÞ ¼
Yc
j¼1

Pr GjðxÞ� 0
� �

¼
Yc
j¼1

U
�ĝjðxÞ
ejðxÞ

� �
ð7:14Þ

The first factor of the CEI criterion (in Eq. (7.13)) tends to select a point where
the expected improvement is large, while the second factor tends to select a point
where the PoF is large. By considering the product of these two factors, the CEI
criterion selects a point that is likely to satisfy all constraint functions and also has a
large expected improvement as the next sample point. To demonstrate the opti-
mization properties of the CEI criterion, the Branin optimization problem is revised
by adding only one simple constraint (Forrester et al. 2008):

f ¼ x2 �
5:1
4p2

x2 þ
5
p
x1 � 6

� �2

þ 10 1� 1
8p

� �
cos x1 þ 1


 �
þ 5x1;

g ¼ �x1x2 þ 20� 0

x1 2 �5; 10½ �; x2 2 0; 15½ �

ð7:15Þ

Figure 7.5a depicts the constrained Branin optimization problem, where the
solid line represents the contour of the objective function. The boundary repre-
sented by the blue solid line indicates where the constraint function is equal to zero.
The lower left area is the infeasible region, while the upper right area represents the
feasible region. The blue star denotes the globally optimal feasible solution to the
constrained Branin optimization problem, which is located on the boundary of the
constraint function.

Figure 7.5b–d shows the contours of the EI function, the PoF function and the
CEI function for the constrained Branin optimization problem. The more darkly an
area is coloured, the larger the function value in that area. The white dots represent
the sample points used to build the kriging model. In Fig. 7.5b, the positions of the
three peaks of the EI function are very close to the positions of the three minimum
values of the objective function of the constrained Branin optimization problem,
which means that the EI function can best search the objective space. As shown in
Fig. 7.5c, the PoF function can accurately approximate the constraint function. The
value of the PoF function in the lower left infeasible region is 0, while the value in
the upper right feasible region is 1. Additionally, near the constraint boundary
between the lower left and the upper right, the value of the PoF function changes
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sharply from 0 to 1. The CEI function shown in Fig. 7.5d is the product of the EI
function and the PoF function, meaning that it considers both the objective function
and the constraint function. In Fig. 7.5, it can be seen that the peak area on the right
of the CEI function is very close to the true optimal feasible solution to the con-
strained Branin problem, which means that the CEI criterion can be effectively used
to search for the optimal solution to the constrained Branin problem.

The CEI criterion is the main criterion used for constrained optimization prob-
lems. However, when there is no feasible solution in the set of sample points, the
constrained SBO algorithm uses the PoF criterion as the update criterion to select a
new sample point that satisfies all constraint functions. Once a feasible solution is
found, the constrained SBO algorithm again uses the CEI criterion as the update
criterion to improve the current optimal feasible solution.

Fig. 7.5 The constrained Branin problem and its corresponding EI, PoF and CEI functions
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7.1.1.4 Procedures for the SBO Algorithm Driven by the CEI
Criterion

The process of the SBO algorithm driven by the CEI criterion is similar to that of
the SBO algorithm driven by the EI criterion. The algorithm can again be divided
into two steps: the first step is to apply a design of experiments method to generate
the initial sample points, and the second step is to iterate the loop while selecting a
new sample point in each iteration. However, the iteration process of the con-
strained SBO algorithm is slightly different from that of the unconstrained SBO
algorithm. The constrained SBO algorithm uses either the PoF criterion or the CEI
criterion to select the next point based on whether the current set of sample points
contains a feasible solution. If there is no feasible solution among the current
sample points, then the constrained SBO algorithm must find a feasible solution;
therefore, the update criterion is to maximize the PoF function to select the updated
sample point that is most likely to satisfy all constraint functions. If there is at least
one feasible solution among the sample points (the initial sample points plus any
sample points obtained by maximizing the PoF criterion), then the highest priority
of the constrained SBO algorithm is to improve the current optimal feasible solu-
tion; therefore, the update criterion is to maximize the CEI function to select the
updated sample point that offers the greatest potential improvement to the current
optimal feasible solution.

The optimization process of the constrained SBO algorithm driven by the CEI
criterion is shown in Algorithm 7.2. First, for the initial sample points, not only the
true response values of the objective function but also those of all constraint
functions need to be calculated. Similarly, a kriging model must be built not only
for the objective function but also for each constraint function, as shown in lines 2–
5. Then, before selecting the new sample point, it is necessary to judge whether a
feasible solution exists in the current set of sample points. If there is no feasible
solution, then the next sample point is selected based on the PoF criterion, whereas
if there is at least one feasible solution among the current sample points at this time,
then the next sample point is selected based on the CEI criterion, as shown in lines
6–10. After the next sample point is chosen, the constrained SBO algorithm cal-
culates the true value of the objective function and each constraint function at the
new sample point and adds this sample point to the set of sample points, as shown
in lines 11–16. At the end of each round of iteration, if there is still no feasible
solution in the current sample set, then the message ‘Cannot find any feasible
solution!’ is output, whereas if there is a feasible solution in the sample set at this
time, then the current optimal feasible solution is updated, as shown in lines 17–21.
Thus, the constrained SBO algorithm completes one round of iteration. If the
predetermined stopping criterion is not satisfied at this time, then the SBO algo-
rithm returns to line 2 and proceeds to the next iteration.
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Figure 7.6 shows the iterative process of the SBO algorithm for the constrained
Branin problem. In the left column, the solid lines represent the contour maps of the
Branin objective function, the blue solid lines represent the constraint function
boundaries, the upper right areas represent the feasible regions, the white dots
represent the sample points, the red dots represent the newly added sample points
selected based on the CEI criterion, and the blue stars represent the true optimal
feasible solution to the constrained Branin optimization problem. In the right col-
umn, the cloud images represent the contour plots of the CEI criterion, the white
dots represent the sample points and the red dots represent the positions of the
maximum values of the CEI function.

The steps of the constrained SBO algorithm are summarized as follows. First, 21
initial sample points are selected in the design space, as shown by the white dots in
Fig. 7.6a. Then, the true response values of the objective function and the constraint
function at the initial sample points are calculated, and the initial krigingmodels of the
objective function and the constraint function are constructed based on these true
response values. Since feasible solutions exist among the initial sample points, the
constrained SBO algorithm uses the CEI criterion to search for the next sample point.
Based on the predicted response values and prediction errors provided by the kriging
models, the contour plot of the CEI function is obtained, as shown in Fig. 7.6b.

Fig. 7.6 The iterative process driven by the CEI criterion for the constrained Branin problem
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Ameta-heuristic optimization algorithm is applied to obtain themaximumvalue of the
CEI criterion, and the corresponding point is selected as the first new sample point to
be added, as shown by the red dot in Fig. 7.6b. After the first new sample point is
obtained, the true response values of the objective function and the constraint function
at this point are calculated. The first new sample point is added to the sample set, and
the kriging models of the objective function and the constraint function are updated.
Based on the updated kriging models, the contour plot of the updated CEI function is
obtained, as shown in Fig. 7.6d. The second new sample point to be added, as shown
by the red dot in Fig. 7.6d, is then also obtained by maximizing the updated CEI
function using themeta-heuristic optimization algorithm. As before, the true response
values of the objective function and the constraint function at the second new sample
point are calculated, and this new sample point is added to the existing sample points.
The kriging models of the objective function and the constraint function are updated,
and the algorithm proceeds to the next iteration to select the third newly added sample
point. In fact, the first newly added sample point is already very close to the real
optimal solution to the constrained Branin optimization problem.

In this example, since the constraint function of the Branin optimization problem
is very simple, only one iteration of the constrained SBO algorithm needs to be
performed based on the CEI criterion to find a solution that is very close to the
optimal solution of the constrained Branin problem. When the constraint functions
of the problem are more complicated, the constrained SBO algorithm often needs
more iterations to find an optimal feasible solution.

It can be seen from the above procedures that the optimization process of the
constrained SBO algorithm driven by the CEI criterion is very similar to that of the
unconstrained SBO algorithm driven by the EI criterion; the difference is that the
unconstrained efficient global optimization (EGO) algorithm uses the EI criterion to
dynamically update the kriging model, while the constrained EGO algorithm uses
the PoF criterion (when there is no feasible solution in the current sample set) or the
CEI criterion (when there is at least one feasible solution in the current sample set)
to update multiple kriging models. The PoF and CEI criteria have many properties
similar to those of the EI criterion:

(1) Both the PoF criterion and the CEI criterion are functions whose values are
greater than or equal to zero. Moreover, when there is no feasible solution in the
current sample set, the PoF criterion has a value of zero at every sample point
and a value greater than zero at every unobserved point; similarly, when there is
at least one feasible solution in the current sample set, the CEI criterion has a
value of zero at every sample point and a value greater than zero at every
unobserved point.

(2) Both the PoF criterion and the CEI criterion have explicit analytical expres-
sions, which can be quickly and easily calculated. Therefore, a meta-heuristic
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optimization algorithm can be used to optimize these criteria to select the next
sample point, and the time required to optimize the PoF or CEI function is
negligible compared to that of time-consuming simulations.

(3) Since the problem of selecting the next sample point based on the PoF criterion
or the CEI criterion is an unconstrained optimization problem, the process of
solving it is simpler than that of solving a constrained optimization problem.

7.1.2 Probability of Improvement Criteria

7.1.2.1 The Unconstrained Probability of Improvement (PI) Criterion

For any unobserved point x in the design space, when using a kriging model for
prediction, the predicted response value at x can be regarded as a random variable
YðxÞ obeying a normal distribution, and its mean ŷðxÞ and variance ŝ2ðxÞ can be
provided by the kriging model. The current optimal solution among the sample
points is denoted by fmin. The probability of improvement refers to the probability
that the predicted response value at an unobserved point will be less than the
response value of the current optimal solution fmin. The following equation gives the
formulation for the PI criterion (Viana and Haftka 2010):

PðxÞ ¼ P bY ðxÞ\ymin

� 
¼ U

fmin � ŷðxÞ
sðxÞ

� �
ð7:16Þ

where U �ð Þ is the standard normal distribution function, ŷðxÞ is the predicted
response value (mean) at the unobserved point and sðxÞ is the standard deviation of
the prediction. When the PI criterion is applied, the point corresponding to the
optimal solution that maximizes PðxÞ throughout the design space is selected as the
next sample point to update the kriging model. Here, the one-dimensional function
introduced in Sect. 7.2.1 is used to demonstrate the basic idea of the PI criterion, as
shown in Fig. 7.7. The solid red line represents the true function. The black dotted
line represents the kriging model constructed based on the sample points (repre-
sented by the pink dots in Fig. 7.7). The current optimal solution fmin is the one with
the minimum response value among the current sample points (represented by the
solid blue line in Fig. 7.7). The green dash-dotted line represents the standard
normal probability density function at the unobserved point x ¼ 0:7. Thus, the
green region in Fig. 7.7 represents the probability of improvement at x ¼ 0:7:

7.1.2.2 Procedures for the SBO Algorithm Driven by the PI Criterion

The SBO algorithm driven by the PI criterion follows the same procedures used for
the SBO algorithm driven by the EI criterion. The only difference between these
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procedures is that the SBO algorithm driven by the PI criterion selects the newly
added sample points by maximizing the PI function, as shown in Algorithm 7.3,
whereas the point with the maximum value of the EI function is selected as the next
sample point in the SBO algorithm driven by the EI criterion.

Fig. 7.7 The probability of
improvement for the
one-dimensional function at
x ¼ 0:7
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Figure 7.8 shows the iterative process for the one-dimensional function
(Forrester et al. 2008) driven by the PI criterion. In the left column, the white dots
represent the set of sample points, the pink dots are the new sample points obtained

Fig. 7.8 The iterative process driven by the PI criterion for the one-dimensional function
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by maximizing the PI function, the solid red lines represent the true
one-dimensional function and the black dotted lines represent the kriging models
constructed based on the sample points. In the right column, the solid black lines
represent the PI function, and the pink dots indicate the maximum values of the PI
function. The first three rows show the optimization process from iterations 1 to 3,
while the last row shows the last round of iteration. As shown in Fig. 7.8a, four
initial sample points are used to build the initial kriging model. In the end, eight
new sample points have been added to the sample set. As the number of sample
points in the neighbourhood of the current optimal solution increases, the predicted
standard deviation in that region will decrease. Once the value of the PI function in
the neighbourhood of the current optimal solution is sufficiently small, the search
will begin to move towards other areas where the predicted standard deviation is
large.

In addition, from Fig. 7.8, we can see that the PI function has the same prop-
erties as the EI function. The value of the PI function is always greater than or equal
to zero. At sample points, the value of the PI function is always equal to 0, and at
unobserved points, the value of the PI function is always greater than 0.

7.1.2.3 The Constrained Probability of Improvement (CPI) Criterion

To solve constrained optimization problems, the constrained probability of
improvement (CPI) criterion has been proposed. The CPI criterion can be seen as a
combination of the PI criterion and the PoF function, which is identical to the PoF
function used in the CEI criterion. The CPI criterion is formulated as follows:

Fig. 7.8 (continued)
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CPIðxÞ ¼ PIðxÞ 	
Yc
j¼1

Pr GjðxÞ� 0
� �

¼ U
fmin � ŷðxÞ

sðxÞ

� �
	
Yc
j¼1

U
�ĝjðxÞ
ejðxÞ

� � ð7:17Þ

where PIðxÞ is the PI function without considering the constraint functions andQc
j¼1 Pr GjðxÞ� 0

� �
¼
Qc

j¼1 U
�ĝjðxÞ
ejðxÞ

� 
is the PoF function, which represents the

probability that the point x satisfies all constraint functions.
Since the CPI criterion is similar to the CEI criterion, it has the same capabilities

as the CEI criterion. In Fig. 7.9, the constrained Branin optimization problem
(Forrester et al. 2008) is used to illustrate the properties of the CEI criterion.

Fig. 7.9 The constrained Branin problem and its corresponding PI, PoF and CPI functions
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Figure 7.9a gives the contour plot of the Branin function. The solid blue line
represents the constraint function, which divides the design space into feasible and
infeasible domains. The lower left area is the infeasible region, while the upper right
area is the feasible region. The blue star indicates the true optimal feasible solution
to the constrained Branin problem. Figure 7.9b shows the contour plot of the PI
function, from which it can be seen that the two peak areas of the PI function are
close to two of the three minimum regions of the constrained Branin problem.
Figure 7.9c gives the contour plot of the PoF function for the constraint function of
the Branin problem, which is consistent with the constraint function boundary in
Fig. 7.9a. Figure 7.9d depicts the contour plot of the CPI function, which is the
product of the PI function and the PoF function. The maximum value of the CPI
function is close to the true optimal feasible solution. By maximizing the CPI
function to select new sample points, an optimal solution will be obtained that will
approach the true optimal feasible solution.

7.1.2.4 Procedures for the SBO Algorithm Driven by the CPI
Criterion

The procedures for the SBO algorithm driven by the CPI criterion are the same as
those for the SBO algorithm driven by the CEI criterion, except that the search for
new sample points is guided by maximizing the CPI criterion (as shown in
Algorithm 7.4) instead of the CEI criterion.
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The process of using the SBO algorithm driven by the CEI criterion to solve the
constrained Branin problem (Forrester et al. 2008) is illustrated in Fig. 7.10. In the
left column, the contours of the constrained Branin function and its boundary
(represented by the blue lines in Fig. 7.10) are shown; in addition, the true optimal
feasible solution is denoted by the blue stars, and the white dots indicate the sample
points used to construct the kriging models. In the right column, the contour maps
from the first three iterations are depicted, and the red dots indicate the maximum
values of the CPI function, which determine the selection of the newly added
sample points. In the first iteration, since the selected new sample point is in the
feasible domain, the search tends towards the minimum region of the constrained
Branin problem in the second iteration. From Fig. 7.10e, we can see that the second
newly added sample point is very close to the true optimal feasible solution.
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Fig. 7.10 The iterative process driven by the CPI criterion for the constrained Branin problem
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7.1.3 Lower Confidence Bound Criteria

7.1.3.1 The Unconstrained Lower Confidence Bound (LCB) Criterion

The EI criterion can be used as the infill criterion to search for new sample points,
as discussed in Sect. 7.2.1. When the predicted response value is smaller than the
current minimum response value and the prediction error is small, the search will
focus on the neighbourhood of the current minimum response value, emphasizing a
local exploitation; when the predicted response value approaches the current min-
imum response value and the prediction error is large (that is, the accuracy of
prediction at the unobserved point is low), the search will focus on regions with low
prediction accuracy, emphasizing a global exploration. Therefore, when the pre-
diction error at the unobserved point is large and/or the prediction response value at
the unobserved point is smaller than the current minimum response value, the value
of the EI function is large. Maximizing the EI function to obtain the next sample
point can balance the relationship between the global and local search capabilities.
However, to apply the EI criterion, a sufficient local search must be performed
before the global search, resulting in a large amount of computation.

The LCB criterion is formulated as follows (Laurenceau et al. 2010):

LCBðxÞ ¼ ŷðxÞ � b � ŝðxÞ ð7:18Þ

where ŷðxÞ is the response value predicted by the kriging model at the unobserved
point; and b is an equilibrium constant defined by the designers, which plays an
important role in balancing the relationship between the global and local search
capabilities. When b ¼ 0, minimizing the LCB criterion is equivalent to minimizing
ŷðxÞ; consequently, the search is local in nature, focusing on the current minimum
value of the objective function. When b ! 1, the effect of ŷðxÞ is negligible, and
minimizing the LCB criterion is equivalent to maximizing the prediction standard
deviation ŝðxÞ; consequently, the search is global in nature, focusing on areas with
poor prediction accuracy. In addition, the problem of maximizing the LCB function
can be converted into a minimization problem by multiplying by −1. The physical
meaning of minimizing Eq. (7.18) can be seen as a combination of two objectives:
minimizing ŷðxÞ while maximizing ŝðxÞ: b is selected based on experience and can
simply be defined as b ¼ 1 to balance global exploration with local exploitation.

Figure 7.11 presents the LCB function (represented by the blue dotted line) for
the one-dimensional function (Forrester et al. 2008). The true function is shown by
the red line, and the kriging model built based on the four initial sample points
(represented by the pink dots) is shown by the black dashed line. From Fig. 7.11,
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we can see that the value of the LCB function is always equal to or smaller than the
value predicted by the kriging model. Since the prediction errors at sample points
are 0, the LCB function at a sample point is equal to the prediction response. At
unobserved points, the value of the LCB function is smaller than the prediction
response because of the prediction error.

7.1.3.2 Procedures for the SBO Algorithm Driven by the LCB
Criterion

The process of the SBO algorithm driven by the LCB criterion is similar to that of
the SBO algorithm driven by the EI criterion, as described in Sect. 7.1.2.2. The
procedures of SBO algorithm is summarized in Algorithm 7.5. First, the design
variables and the design space A are identified. The initial kriging model is built
based on initial sample points that are generated in the design space using a design
of experiments method. The initial trust region T1 is the entire design space
A. Then, in each iteration of the loop, a new sample point is selected by minimizing
the LCB criterion. After the true response value at the new sample point is cal-
culated, this sample point is added to the sample set, and the kriging model is
updated. In addition, the trust region is updated based on the currently known
information. Once the stopping criterion is satisfied, the iterative process stops, and
the optimization process ends. The optimal solution obtained in lines 7–8 is the
optimal solution to the original problem. If the stopping criterion is not satisfied, the
optimization algorithm will return to line 2.

During the optimization process, the LCB function is treated as the objective
function. The solution obtained by minimizing the objective function is chosen as

Fig. 7.11 The LCB function
for the one-dimensional
function
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the next sample point to be added. Then, the kriging model is updated. This process
is repeated until convergence is reached. When b is small, the new sample points are
selected with a focus on the neighbourhood of the current minimum value of the
objective function, and the overall search direction is biased towards the local region.
When b is large, the nature of the search is continuously transformed between global
and local, with an overall bias towards a global search, until convergence is reached.

The optimization process driven by the LCB criterion is demonstrated here for
the one-dimensional function (Forrester et al. 2008). The first three iterations and
the last iteration are shown in Fig. 7.12. In the left column, the true function (red
lines) and the kriging models (black dashed lines) built based on the sample points
(white dots) are depicted. In the right column, the LCB function for each iteration is
shown, and the calculated minimum values of the LCB functions are indicated by
pink dots. The minimum value of the LCB function in Fig. 7.12 is obtained at the
point indicated by the pink dot, and this point is added to the set of sample points
and used to reconstruct the kriging model for the next iteration until the iterative
process ends. Once nine new sample points have been added, the stopping criterion
is satisfied, and the final optimal solution is obtained.
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7.1.3.3 The Constrained Lower Confidence Bound (CLCB) Criterion

The constrained lower confidence bound (CLCB) criterion has been proposed to
solve constrained optimization problems. It can be regarded as a combination of the
PoF criterion and the LCB criterion. There are some similarities between the CEI

Fig. 7.12 The iterative process driven by LCB iteration on the one-dimensional function
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and CLCB criteria, but there are also slight differences between them since the
CLCB criterion considers different forms of the PoF function depending on the sign
of the LCB function:

CLCBðxÞ ¼
LCBðxÞ

Qc
j¼1

1
Pr GjðxÞ� 0ð Þ if LCBðxÞ[ 0

LCBðxÞ
Qc
j¼1

Pr GjðxÞ� 0
� �

if LCBðxÞ� 0

8>><>>: ð7:19Þ

where LCBðxÞ is the LCB function without considering the constraint functions and
Pr GjðxÞ� 0
� �

is the probability that the point x satisfies the j-th constraint function.

Thus,
Qc
j¼1

Pr GjðxÞ� 0
� �

¼
Qc
j¼1

U �ĝjðxÞ
ejðxÞ

� 
, which is called the PoF function, repre-

sents the probability that the point x satisfies all constraint functions. Here, c rep-
resents the number of constraint functions.

The value of the PoF function is always greater than or equal to 0; if there is no
feasible sample point, the values of the PoF function at all sample points are zero,
while those at unobserved points are greater than zero. Therefore, the sign of the
CLCB function is determined by the sign of the LCB function. If LCBðxÞ[ 0, then
CLCBðxÞ[ 0; if LCBðxÞ� 0, then CLCBðxÞ� 0. To minimize the CLCB function,
the search is performed by minimizing LCBðxÞ, that is, minimizing ŷðxÞ and
maximizing ŝðxÞ. Thus, the search will tend towards areas with LCBðxÞ� 0. In
addition, the value of the PoF function will be greater when all constraint functions
are satisfied than it will be when at least one constraint function is not satisfied. Thus,
when minimizing the CLCB function, the search process will tend to select a point

Fig. 7.12 (continued)
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where LCBðxÞ� 0 and all constraint functions are satisfied (when LCBðxÞ� 0, the
greater value of the PoF function will make the value of the CLCB function smaller).
In contrast, points at which LCBðxÞ[ 0 and at least one constraint function is not
satisfied (when LCBðxÞ[ 0, the smaller value of the PoF function will increase the
value of the CLCB function) can more easily be eliminated.

The constrained Branin problem is used as an example here to explain the basic
idea of the CLCB criterion. In Fig. 7.13, the contour maps of the constrained
Branin problem and its LCB, PoF and CLCB functions are given. The blue solid
line in Fig. 7.13a is the constraint boundary of the constrained Branin problem; the
area on the upper right side of the boundary is the feasible region, while the area on
the lower left side is the infeasible region. The sample points used to build the
kriging model are indicated by white dots. The true optimal feasible solution to the
constrained Branin problem is represented by a blue star. The more darkly an area is
coloured, the larger the value of the function in that area. The three maximum
regions of the LCB function in Fig. 7.13b are quite consistent with three minimum

Fig. 7.13 The constrained Branin problem and its corresponding LCB, PoF and CLCB functions
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regions of the constrained Branin problem. The PoF function in Fig. 7.13c is
similar to the boundary defined by the constraint function of the constrained Branin
problem in Fig. 7.13a. In Fig. 7.13d, the maximum region of the CLCB function is
exactly coincident with the location of the true optimal solution. The CLCB cri-
terion is the product of the LCB function and the PoF function. By minimizing the
CLCB function, the search process can be easily and quickly driven towards the
neighbourhood of the true optimal feasible solution.

7.1.3.4 Procedures for the SBO Algorithm Driven by the CLCB
Criterion

When the CLCB criterion is used to select the next sample point, the sign of the
LCB function determines the form of the PoF function that is used when mini-
mizing the CLCB criterion. Therefore, the procedures for the SBO algorithm driven
by the CLCB criterion are different from those for the SBO algorithm driven by the
CEI criterion. Again, there are two main steps in the optimization process: first,
generating the initial sample set using a design of experiments method, and then,
selecting a new sample point in each iteration of the loop by minimizing the CLCB
criterion. The iterative process does not terminate until the stopping criterion is met.

The optimization process of the constrained SBO algorithm driven by the CLCB
criterion is shown in Algorithm 7.6. First, the true response values of both the
objective function and the constraint functions at the initial sample points are
calculated through simulations and analysis. Therefore, in lines 2–4, kriging models
are built not only for the objective function but also for the constraint functions.
Then, a new sample point is selected by minimizing the CLCB function. Next, the
true response values of the objective function and the constraint functions at the
selected sample point are calculated. After adding this point to the set of existing
sample points and before selecting the next new sample point, it is necessary to
judge whether there is a feasible solution in the current set of sample points if the
stopping criterion has not yet been met. In the next iteration, the kriging models are
reconstructed based on the new sample set. When the iterative process ends, the
current optimal solution is adopted as the final optimal solution and is output.
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To demonstrate the iterative process of the SBO algorithm driven by the CLCB
criterion, the constrained Branin problem is used as an example. In the first itera-
tion, the initial kriging model is built based on the initial sample points (white dots
in Fig. 7.14a). Additionally, the CLCB function is obtained, making full use of the
information on the predicted values and prediction errors. Then, the minimum value
of the CLCB function is found (represented by the red dot in Fig. 7.14b). Since the
stopping criterion has not been satisfied, the algorithm proceeds to the second

Fig. 7.14 The iterative process driven by CLCB iteration on the constrained Branin function
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iteration. The newly selected point (represented by the red dot in Fig. 7.14c) is
added to the existing sample points, representing the first update to the sample set.
Note that the solid blue line in Fig. 7.14c represents the constraint boundary of the
constrained Branin problem. The region on the left side of the boundary is the
infeasible domain, and the region on the right side is the feasible domain. Thus, the
first newly added sample point is infeasible. Therefore, the most important task in
the second iteration is to search for a new sample point in the feasible region.
Consequently, the PoF function is the dominant driver of the search process, based
on which the second new sample point is obtained (represented by the red dot in
Fig. 7.14d). It is obvious that this new point is in the feasible domain. Therefore,
the search process in the third iteration is dominated by the LCB function, and the
third new sample point (represented by the red dot in Fig. 7.14f) is selected from
the minimum feasible domain. When the algorithm proceeds to the fourth iteration,
the third newly added sample point selected based on the CLCB criterion is very
close to the true optimal feasible solution, as shown in Fig. 7.14g.

7.2 Surrogate-Model-Based Robust Design Optimization

In deterministic optimization problems, the design variables, objective functions and
constraints are deterministic and without multi-source uncertainties arising from
engineering design and the product manufacturing process (Eldred et al. 2002).
Consequently, the optimal solution may be very sensitive to these uncertainties
(Chen et al. 2016). Robust optimization (RO) methods have been proposed to obtain
solutions that are both optimal and relatively insensitive to input uncertainty. RO
methods can be classified into two types: probabilistic approaches and deterministic
approaches. In probabilistic approaches, RO is performed based on the probability
distributions of the variable variations, usually the means and variances of the
uncertain variables (Du and Chen 2004; Du et al. 2008; Chen et al. 2014; Lim et al.

Fig. 7.14 (continued)
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2014; Li et al. 2016). Deterministic approaches, on the other hand, incorporate
non-statistical indexes such as gradient information (Taguchi 1978; Renaud 1997;
Lee and Park 2001; Kim et al. 2010; Papadimitriou and Giannakoglou 2013) or
sensitivity region information (Gunawan and Azarm 2004, 2005a, b; Li et al. 2006,
2009b, 2010; Hu et al. 2011; Zhou et al. 2012, 2015c; Zhou and Li 2014; Cheng
et al. 2015c) into the original optimization problem to obtain a robust optimum. With
the rapid development of computer capabilities and speed, computational simulation
methods, e.g. computational fluid dynamics and finite element analysis, become
widely used in RO methods in place of computationally intensive real-life experi-
ments for performance evaluation. However, directly using computer simulations
along with an optimizer to evaluate many design alternatives when exploring the
design space in search of a robust optimum can be computationally prohibitive
(Zhang et al. 2012). Therefore, surrogate-model-based RO approaches have recently
attracted significant attention. In this chapter, the typical surrogate-model-based
probabilistic and deterministic RO approaches are introduced.

7.2.1 Surrogate-Model-Based Probabilistic Robust
Optimization (RO) Approaches

7.2.1.1 Basic Concept of Probabilistic RO

When the design variables x and parameters (noise factors) z of a robust design
problem are random variables (Zhou et al. 2015b), it is very effective to adopt a
stochastic model and an optimization method for random variables to solve the
robust design or RO problem. The optimal design of random engineering variables
(Zhu et al. 2009) is a branch of optimization technology that has been developed in
recent decades. It provides an important set of tools for applying optimization
technology, probability theory, mathematical statistics and computer technology to
engineering problems to cope with various random factors. When an engineering
problem involves random design variables and random parameters, the response
value y ¼ y x; zð Þ is also a random variable (Coello 2000). In this case, the general
form of the stochastic optimization design model is as follows:

x 2 X; T ;Pð Þ 
 Rn

opt: F0 xð Þ ¼ F y x; zð Þf g
s:t: Fj xð Þ ¼ G gj x; zð Þ

� �
� 0; j ¼ 1; 2; . . .;m

z 2 X; T ;Pð Þ 
 Rn

ð7:20Þ

where x is the n-dimensional design variable vector; z is the k-dimensional random
parameter vector; F �f g and G �f g are generic functions with some probabilistic
meaning, for example, the expectation value, variance, or probability; and X; T ;Pð Þ
is the probability space. This means that both x and z belong to the probability space.
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A collection of design variables x is considered to be the optimal solution x� to
the model if it belongs to the set

D ¼ x Fj xð Þ
�� � 0; j ¼ 1; 2; . . .;m

� �
ð7:21Þ

Its probability distribution and distribution parameters should be known, and
x should satisfy the condition

F0 �x�ð Þ ¼ minF0 xð Þ ð7:22Þ

There are two basic ways to solve the model introduced above. The first way is
to transform the stochastic model into a deterministic one, which is feasible for
cases in which the random variables and stochastic functions are normally dis-
tributed and the dispersion coefficients of the variables are small (Han et al. 2012).
The second way is to use a stochastic method to solve the random model directly.
Methods of this kind are not limited to any particular forms of the variable dis-
tributions or of the correlations between the random variables (Zhou et al. 2017). To
solve problems of engineering programme design, several basic concepts and
definitions related to stochastic problems need to be introduced, based on which the
challenges related to modelling and solution methods for robust design can be
reasonably addressed (Oberkampf et al. 2001). Therefore, in the first few parts of
this section, several basic problems related to stochastic modelling are introduced. It
is worth mentioning that when a surrogate model is applied, the uncertainty of this
model, as discussed in Chap. 5, also needs to be considered.

The variations encountered in practical engineering problems can be divided into
two general types, as follows. Variations of the first type are related to the uncer-
tainty of the data obtained by measuring or testing physical or mechanical pro-
cesses. Variations of the second type are caused by random processes or factors of
chance. These types of randomness can be represented in terms of random variables
that obey a particular probability distribution (Gano et al. 2006a).

(1) Random analysis of the design variables

During the design process, we need to adjust the mean value and tolerance of each
design variable to reduce the deviation of the quality index y and the fluctuation
value ey (Haftka 1991). The design variables can be expressed as

xT ¼ x1; x2; . . .; xnð Þ ¼ X; T ;Pð Þ 
 Rn ð7:23Þ

where X is a random event, T represents the whole random event set, and
P represents the probability. In this way, the design variables can be expressed as

xi ¼ �xi þ ti; i ¼ 1; 2; . . .; n ð7:24Þ
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Considering the stochastic independence of the design variables, it is assumed
that ti follows the normal distribution N 0;rð Þ; therefore, its mean, variance and
covariance are

E tið Þ ¼ 0;Var tið Þ ¼ r2xi ¼ di�xið Þ2;Cov ti; tið Þ ¼ 0; j 6¼ i ð7:25Þ

where di is a deviation function. The tolerance range of design variable xi is
assumed to be D�xi ¼ Dxþij j ¼ Dx�i

�� �� i ¼ 1; 2; . . .; nð Þ. Based on the three-sigma
quality principle, the relationship between the tolerance Dxi and the standard
deviation rxi of this design variable is presented as follows:

rxi ¼
�xi þDxi � �xi � Dxið Þ

6
¼ Dxi

3
ð7:26Þ

Since tij j �Dxi, in the general case, the tolerance for design variable xi should be
specified; that is, Dxi should also be treated as a design variable during the design
process. In rare cases, a deviation function di could also be set as a design variable.
A more intuitive illustration is provided in Fig. 7.15.

Theoretically, the distribution types and the design variables should be adjusted
simultaneously when optimally solving the stochastic model. However, it is
impossible to achieve precise results (Gu et al. 2000). As a result, depending on the
characteristics of the mechanical product design process, the designers could refer
to statistical test experience and sample test experience for critical components, data
on the parameters of similar components, or purely subjective inference (usually,
the first option chosen will be a normal distribution) to determine the types of
distributions that the design variables obey. Then, by adjusting the distribution
parameters (shape, size and position parameters) or characteristic values (mean and
variance), the optimal solution to the problem can be gradually acquired (Kerschen
et al. 2006). In particular, when the latter approach is applied, a random design
variable can be represented in terms of its mean and deviation, which are consistent
with the nominal values used in mechanical design (Madsen et al. 2006). In this
way, when the deviation coefficient of some design variable is known, its mean
value can be used to assist in the iterative computations for optimization.

Fig. 7.15 Normally
distributed design variables
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D�xðkþ 1Þ
i ¼ �xðkÞi þ aiS

ðkÞ
i ; i ¼ 1; 2; . . .; n ð7:27Þ

In this way, the process can be considerably simplified, as illustrated in
Fig. 7.16.

From the above, it is clear that the design variable xi can be regarded as rep-
resenting a random variation within the tolerance range Dx�i ;Dx

þ
i

� �
for dealing

with the concept of ‘randomness’ (Arendt et al. 2013). For example, each geometric
dimension of a mechanical part will obey a normal distribution with mean l and
variance r2; the nominal value of each dimension can be set to the corresponding
mean value l, and the tolerance range can be obtained by calculating �kr, where
k ¼ 1; 2; . . .. For instance, when k ¼ 2, the true value will be within the range of
l� 2r; lþ 2r½ � with 95.45% probability. When k ¼ 3, the probability reaches
99.73%. When the tolerance is unknown, the optimal solution to the problem can
also be found by adjusting the mean xi of the random design variable and con-
trolling the deviation coefficient di to represent the tolerance (Dxi ¼ 3lxdi). This
approach is beneficial for studying problems such as maximum tolerance design,
the optimal allocation of tolerance and the most economical tolerance.

When a design variable has a definite value, it can be regarded as a special type
of random variable with a dispersion coefficient of zero.

(2) Random analysis of the uncertainty parameters

Uncertainty (randomness or fuzziness) is presented in both internal and external
noise factors (Zhou et al. 2016b). Examples include the randomness of working
loads, the physical and mechanical properties of materials, wind forces and rainfall
as well as the fuzziness of product quality evaluations, the intensity grading of
phenomena such as wind strength and earthquakes, etc. (Apley et al. 2006). Noise
factors whose distribution types and parameters are already known during the
design process are called random parameters z, which can be represented as

Fig. 7.16 Iteration with the
mean values of random
design variables
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zT ¼ z1; z2; . . .; zkð Þ 2 X; T ;Pð Þ 
 Rk ð7:28Þ

where every random parameter zi is a function of certain distribution parameters ai,
bi and ci (Gano et al. 2006b):

zi ¼ / ai; bi; cið Þ; i ¼ 1; 2; . . .; k ð7:29Þ

Here, / �ð Þ is the distribution function, and ai, bi and ci represent its position,
shape and size parameters, respectively. The k random parameters are generally
mutually independent, but in some cases, their cross-correlations cannot be ignored.

For practical problems, it is generally most convenient to determine the proba-
bility density function of random parameter zi because this function directly reflects
the parameter’s probabilistic statistical properties, based on which a simulated
sample of the corresponding random variable can be generated (Zhu et al. 2015).
Figure 7.17 summarizes the process of collecting, processing, simulating and
applying such random information.

In a practical case, if only a few trials or observations of random events are
conducted, say fewer than ten, then the analogy method and the feature point
method can be used to approximate the probability density function (Bahrami et al.
2016). The probability density function can also be chosen based on experience.
Examples of several typical theoretical distributions are given in Table 7.1.

In design optimization, since probability density functions are always obtained
in an analytical, it will not be challenging to generate random samples from these

Fig. 7.17 Collection, processing, simulation and application process for random information
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functions(Zhou et al. 2016a). In the case in which the probability distribution is
known, the simplest way to generate a random parameter sample is through
redundancy. The steps are as follows:

Step 1: Obtain the probability density function based on a small number of
random samples obtained through experiment or observation.

Step 2: Determine whether the probability density function has boundaries. If it
does not, the truncation limits at the two ends can be obtained in
accordance with the specified precision requirement.

Step 3: Calculate the maximum fmax of the probability density function f zð Þ.
Step 4: Calculate the upper and lower bounds on the value of the random

parameter z, denoted by zmax and zmin, respectively.
Step 5: Generate two random numbers, denoted by r1 and r2, from a uniform

distribution on the interval [0, 1].
Step 6: Calculate the sample value

z ¼ r1 zmax � zminð Þþ zmin ð7:30Þ

Table 7.1 Application examples of several theoretical distributions

Theoretical probability
distribution

Sampling application

Triangular distribution Part size deviation, roughness

Normal distribution Measurement error, manufacturing dimensional deviation, rigidity,
material strength limit, elasticity modulus, systematic error, random
error, fracture toughness, metal wear, applied loading, air humidity,
expansion coefficient, clearance error

Lognormal distribution Strength limit of alloy material, the fatigue life of materials, rainfall
intensity, completion time, spring fatigue strength, corrosion,
corrosion coefficient, the inner pressure of container, metal cutting
tool durability, system trouble-free working time, tooth bending
strength and contact fatigue strength

Weibull distribution Fatigue strength, fatigue life and wear life in mechanical
engineering, radial runout of a shaft, system life

Rayleigh distribution A special occasion of Weibull distribution. Tolerance of shape and
position (such as conicity, rectangularity, flatness, ovality,
eccentricity)

Extreme value
distribution

Various types of load, the extremum value of load (the maximum
or minimum)

Beta distribution A distribution suitable for some bounded random variable
(a\x\b). The probability density function curve shapes differ in
the value of a1, a2

Binomial distribution Typhoon distribution, river pollution distribution, yield distribution

Poisson distribution The distribution of hard stones in the soil, statistical quality
inspection, public service, failure rate
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and determine whether the following condition holds:

r2 �
f zð Þ
fmax

ð7:31Þ

If Eq. (7.31) is true, then the sample z is accepted. Otherwise, the sample is
rejected, and the process returns to Step 5. As shown in Fig. 7.18, the principle of
this acceptance–rejection sampling method is very simple. It can be used for
sampling one-dimensional random parameters as well as for random parameter
vectors with or without correlations (Zhu et al. 2014). With the help of the
acceptance–rejection sampling method, the sampling information required for cal-
culating the random parameters of a random model can be obtained (Steuben and
Turner 2015).

(3) Objective functions and constraints subject to uncertainty

In design optimization problems, when certain quality characteristics or technical
indicators are functions of random design variables x and random parameters z,
such a quality characteristic is called a stochastic design function (Simpson et al.
2001). It can be either a linear or a nonlinear function of one or more random
variables. The general expression is as follows:

y ¼ y x; zð Þ ¼ y x1; x2; . . .; xn; z1; z2; . . .; zkð Þ 2 X; T ;Pð Þ ð7:32Þ

Since the objective functions and constraints in such models are usually estab-
lished based on stochastic design functions, an objective function or constraint of
this kind is also random (Tan 2015a). There are three commonly used metrics for
measuring the randomness of such an objective function or constraint:

The expectation value (mean):

E yf g ¼ E y x; zð Þf g ¼ E y x1; x2; . . .; xn; z1; z2; . . .; zkð Þf g ð7:33Þ

Fig. 7.18 Schematic diagram
of the acceptance–rejection
sampling method
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The variance of the design function:

Var yf g ¼ Var y x; zð Þf g ¼ Var y x1; x2; . . .; xn; z1; z2; . . .; zkð Þf g ð7:34Þ

The probability that the design function satisfies the target value y0:

P y� y0f g ¼ P y x; zð Þ� y0f g ð7:35Þ

For a quality characteristic y, when the statistical average of y� y0 is less than or
equal to zero (or greater than or equal to zero), this is represented as

E y� y0f g� 0 ð7:36Þ

A constraint expressed in this form is a mean-type constraint, where the pre-
determined target value y0 may be either deterministic or random. We adopt the
notation g ¼ y� y0; then,

E gf g ¼
Zþ1

�1

gf ðgÞ dg ¼
Zþ1

�1

yf ðyÞdy�
Zþ1

�1

y0f y0ð Þ dy0 � 0 ð7:37Þ

where f �ð Þ is the function describing the probability density distribution of the
random variable in the parentheses. Figure 7.19 presents a schematic illustration of
a mean-type constraint.

Mean-type equality constraints are applicable only in certain special cases, such
as when the average value of a design feature is required to meet specified technical
requirements (Gluzman and Yukalov 2006). In the case of spring deflection, for
example, the wire diameter, spring diameter, winding number and material prop-
erties are all random variables, meaning that the deflection is also random (Chen
et al. 2005). However, the designer can specify that the overall average deflection of
the spring should meet certain technical requirements.

Fig. 7.19 Schematic
illustration of a mean-type
equality constraint
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In the general case, we might obtain a transcendental equation of the following
form as a stochastic equality constraint function:

h x1; x2; . . .; xn; z1; z2; . . .; zkð Þ ¼ 0 ð7:38Þ

In this case, not only is it not advisable for the mean value to satisfy the equality
constraint, but it is also impossible for each individual design variable to meet the
constraint. Therefore, when building a stochastic design optimization model, we
should not treat an expression of this kind as an equality constraint but rather should
treat one of the design variables as a function of other random design variables and
random parameters (Cheng et al. 2015c).

For a random design feature, the designer may specify that the probability of this
feature satisfying y� y0 � 0 or� 0ð Þ should be greater than or equal to a certain
preselected probability value a0, represented as

P y� y0 � 0f g� a0 2 0; 1½ � ð7:39Þ

Such a constraint is called a probability constraint.
As in the case of a mean constraint, the target parameter y0 of a probability

constraint may be either deterministic or random. Mathematically, the probability
value for such a constraint can be calculated as follows (Ghisu et al. 2011).
Figure 7.20 presents the calculation diagram for a probability constraint.

Let g ¼ y� y0, and let f �ð Þ represent the function describing the probability
density distribution of the random variable in the parentheses. Then,

P g� 0f g ¼ P y� y0 � 0f g ¼
Zþ1

�1

f ðyÞ
Zþ1

y

dy0 dy ¼
Zþ1

�1

f y0ð Þ
Zy0
�1

f ðyÞ dydy0

ð7:40Þ

The concept of a probability constraint is geometrically illustrated in Fig. 7.21.

Fig. 7.20 Calculation
diagram for a probability
constraint
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7.2.1.2 Probabilistic RO Considering the Uncertainties of the Design
Variables and a Multi-fidelity Surrogate Model

(1) The uncertainty quantification process

A general mathematical model for a constrained RO problem can be expressed as
follows:

Minimize : F Xð Þ ¼ l f Xð Þð Þþ cr f Xð Þð Þ
Subject to : Gi Xð Þ ¼ l gi Xð Þð Þþ cr gi Xð Þð Þ� 0

i ¼ 1; 2; . . .; L

ð7:41Þ

where X ¼ X1;X2; . . .;Xq
� �

is the random design variable vector, with q dimen-
sions; l f Xð Þð Þ and r f Xð Þð Þ are the mean and variance, respectively, of the
objective function; l gi Xð Þð Þ and r gi Xð Þð Þ are the mean and variance, respectively,
of the i-th constraint; L is the number of constraints; and c is a constant value that
reflects the risk attitude of the design. A larger c implies a more conservative
attitude towards uncertainties. When f Xð Þ and g Xð Þ follow Gaussian processes,
different choices of c lead to different confidence levels of the prediction intervals
(Tan 2015b). For example, c ¼ 3 represents a probability of 0.9987.

Here, the random design variable vector X can be split into a deterministic
portion and an uncertain portion, as follows:

X ¼ xþW ð7:42Þ

where x ¼ x1; x2; . . .; xq
� �

represents the deterministic variables and W ¼
½W1;W2; . . .;Wq� represents the uncertainty of the design variables, which reflects
the randomness of X. Here, it is assumed that W follows a Gaussian process with

Fig. 7.21 Geometric relation
between a probability
constraint and a mean
constraint
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zero mean and a given covariance, i.e. W �N 0; r2x
� �

; therefore, X still follows a
multivariate normal distribution X�N 0; r2x

� �
.

To solve the robust problem presented in Eq. (7.41), the means and variances of
the objective and constraints must be evaluated (Younis and Dong 2010). In the
following, expressions are presented for the mean and variance of the objective
function under different circumstances; analogous expressions can be used for the
constraints.

When a surrogate model is not applied, which means that the true response
values of the objective function can be obtained, the mean and variance can be
calculated as follows:

l1 f Xð Þð Þ ¼ E yh Xð Þ½ � ¼
Z
w
yh xþwð Þp wð Þdw ð7:43Þ

r21 f Xð Þð Þ ¼ Var yh Xð Þ½ � ¼ E y2h Xð Þ
� �

� E yh Xð Þ½ �2

¼
Z
w
y2h xþwð Þp wð Þdw�

Z
w
yh xþwð Þp wð Þdw


 �2 ð7:44Þ

where yh Xð Þ is the true response value and p wð Þ is the joint distribution of w. When
the random parameters wi are independent and the marginal probability density
functions pwi are given, the joint probability density function p wð Þ can be calculated
as follows:

p wð Þ ¼
Yd
i¼1

pwi wið Þ ð7:45Þ

When a multi-fidelity (MF) surrogate model is constructed to be used in place of
the high-fidelity (HF) model for obtaining the response values of the objective
function, the mean and variance can be calculated (without considering the surro-
gate model) as follows:

l2 f Xð Þð Þ ¼ E ymf Xð Þ
� �

¼ E ymf xþwð Þ
� �

¼
Z
w
ymf xþwð Þp wð Þdw

ð7:46Þ

r2 f Xð Þð Þ ¼ Var ymf Xð Þ
� �

¼ E y2mf Xð Þ
h i

� E ymf Xð Þ
� �2

¼
Z
w
y2mf xþwð Þp wð Þdw�

Z
w
ymf xþwð Þp wð Þdw


 �2 ð7:47Þ
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where ymf Xð Þ is the response value obtained from the MF surrogate model.
Using Eqs. (7.46) and (7.47) instead of Eqs. (7.43) and (7.44) to evaluate the

mean and variance can significantly ease the computational burden. However, the
MF surrogate model also introduces interpolation uncertainty as a result of the
limited number of simulation runs, as illustrated in Chap. 5. This uncertainty is a
type of model uncertainty, which is an epistemic uncertainty (Arendt et al. 2013; Hu
and Mahadevan 2017). Treating the MF surrogate model as an accurate represen-
tation of the HF model and ignoring the additional prediction uncertainty of the MF
model may result in non-optimal robustness (Cheng et al. 2015b). Hence, it is
essential to quantify the combined effect of the uncertainties in the design variables
and the MF surrogate model when evaluating the mean and variance.

For simplicity, Y X;Vð Þ is used to denote the response obtained from the MF
surrogate model, where X represents the uncertainty of the design variables and
V represents the uncertainty of the MF surrogate model itself (Zimmermann and
Han 2010). Using statistical methods, the uncertainties of the design variables and
the MF surrogate model are treated equally; then, the mean and variance of the
objective function can be expressed as

l2 f Xð Þð Þ ¼ E Y X;Vð Þ½ �

¼
Z
w
ymf xþwð Þp wð Þdw

ð7:48Þ

r3 f Xð Þð Þ ¼ Var Y X;Vð Þð Þ

¼
Z
w
s2 ymf xþwð Þ
� �

p wð ÞdwþVar ymf xþwð Þ
� � ð7:49Þ

where Var ymf xþwð Þ
� �

is equal to r22f Xð Þ, which reflects the effects of the
uncertainty of the design variables, and s2 ymf xþwð Þ

� �
is the mean square error

(MSE) of the hierarchical kriging (HK) prediction, which reflects the effects of the
uncertainty of the MF surrogate model. Thus, r23 f Xð Þð Þ reflects the combined
effects of the uncertainties of the design variables and the MF surrogate model (Xia
et al. 2016). Since a surrogate model is used, ymf xþwð Þ can be inexpensively
obtained. The Monte Carlo integration method can be used to calculate Eqs. (7.48)
and (7.49). The concrete derivations of Eqs. (7.48) and (7.49) are presented below.

For simplicity, Y X;Vð Þ is used to denote the responses considering the uncer-
tainty of the MF surrogate model, where X represents the uncertainty of the design
variables and V represents the uncertainty of the MF surrogate model itself. The
mean value of the objective function can be expressed as
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l3 f Xð Þð Þ ¼ E y X;Vð Þ½ �
¼ E E Y X;Vð Þ=V½ �½ �
¼ E E Y xþw;Vð Þ Vj½ �½ �

¼ E
Z
w
Y xþw;Vð Þp wð Þdw Vj


 �
¼
Z
w
E Y xþw;Vð Þ Vj½ �p wð Þdw

ð7:50Þ

Note that the integral
R
w Y xþw;Vð Þp wð Þdw Vj in the fourth line exhibits ran-

domness because of its functional dependence on V and not because of any
dependence on w. The random effects of w are integrated out in this function.
Because E Y xþw;Vð Þ Vj½ � ¼ ymf xþwð Þ, one can obtain the mean value of the
objective function as follows:

l3 f Xð Þð Þ ¼ E y X;Vð Þ½ �

¼
Z
w
ymf xþwð Þp wð Þdw

ð7:51Þ

In the same manner, the variance of the objective function can be expressed as

r23 f Xð Þð Þ ¼ Var Y X;Vð Þ½ �
¼ Var Y xþw;Vð Þ½ �
¼ E Y2 xþw;Vð Þ

� �
� E Y xþw;Vð Þ½ �2

¼ E E Y2 xþw;Vð Þ Vj
� �� �

� E E Y xþw;Vð Þ Vj½ �½ �2

ð7:52Þ

The first term in the fourth line of Eq. (7.58) can be further expanded using the
law of total expectation as follows:

E E Y2 xþw;Vð Þ Vj
� �� �

¼ E Var Y xþw;Vð Þ Vj½ �½ � þE Y xþw;Vð Þ Vj½ �2
h i

¼ E Var Y xþw;Vð Þ Vj½ �½ � þE E Y xþw;Vð Þ Vj½ �2
h i ð7:53Þ

By substituting Eq. (7.53) into Eq. (7.52), one can rewrite Eq. (7.52) as follows:
Because

r23 f Xð Þð Þ ¼ Var Y X;Vð Þ½ �

¼ E Var Y xþw;Vð Þ Vj½ �½ � þE E Y xþw;Vð Þ Vj½ �2
h i

� E E Y xþw;Vð Þ Vj½ �½ �2

¼
Z
w
Var Y xþw;Vð Þ Vj½ �p wð Þdwþ

Z
w

y2mf xþwð Þ
� 

p wð Þdw�
Z
w

ymf xþwð Þ
� �

p wð Þdw

 �2

ð7:54Þ
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where Var Y xþw;Vð ÞjV½ � ¼ s2 ymf xþwð Þ
� �

is the MSE of the HK prediction,
recalling Eq. (7.47), one can obtain

Var ymf Xð Þ
� �

¼
Z
w
y2mf xþwð Þp wð Þdw�

Z
w

ymf xþwð Þ
� �

p wð Þdw

 �2

ð7:55Þ

The variance of the objective function can then be expressed as

r23 f Xð Þð Þ ¼ Var Y X;Vð Þ½ � ¼
Z
w
s2 ymf xþwð Þ
� �

p wð ÞdwþVar ymf xþwð Þ
� �

ð7:56Þ

The combined effect of the uncertainties of the design variables and the MF
surrogate model can be incorporated into the evaluation of the mean and variance of
the objective function by adopting Eqs. (7.48) and (7.49) in place of Eqs. (7.46) and
(7.47). By substituting Eqs. (7.48) and (7.49) into Eq. (7.42), a robust optimum that
considers the uncertainties associated with the design variables and the MF sur-
rogate model can be obtained.

(2) Demonstration: Design of a long cylindrical pressure vessel for compressed
natural gas

Let us consider the engineering example of a design optimization problem for a
cylindrical pressure vessel. The objective is to minimize the total material con-
sumed for manufacturing. The five continuous design variables and their ranges are
listed in Table 7.2. The geometry, model parameters and loading force of the long
cylindrical pressure vessel are illustrated in Fig. 7.22.

Other geometric parameters are predefined and remain fixed during the opti-
mization process. The optimization is subject to two design constraints, the max-
imum allowable stress and the minimum volume. The cylindrical pressure vessel is
subjected to a uniformly distributed load of P ¼ 23 MPa. The Young’s modulus
and Poisson’s ratio are E ¼ 207 GPa and u ¼ 0:3, respectively. The maximum
allowable stress and the minimum volume are ral ¼ 250 MPa and Vlow ¼ 0:6 m2,
respectively.

Here, the original deterministic problem (Zhou et al. 2016a) is modified to an
RO problem by assuming that two of the design variables, i.e. the inside diameter of

Table 7.2 Ranges of the
design variables

Design variables Range (mm)

The height of the end part h1 280–320

The inside diameter of the end part r1 40–50

The thickness of the end part t1 19–27

The inside diameter of the body part r2 165–205

The thickness of the body part t2 13–23
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the body and the thickness of the body, both follow normal distributions of
R2 � r2; r21

� �
; r1 ¼ 2, and T2 � t2;r22

� �
; r2 ¼ 0:5, respectively. These two uncer-

tain variables are assumed to be independent. Then, the modified RO problem can
be specified as follows:

min : Fr
TC ¼ l TCð Þþ 3r TCð Þ

s:t: gr1 ¼ l rsð Þþ 3r rsð Þ� ral
gr2 ¼ l Vð Þ � 3r Vð Þ�Vlow

ð7:57Þ

where V is the volume of the cylindrical pressure vessel and TC is the total amount
of material consumed for manufacturing. The quantities V and TC are calculated as
follows:

V ¼ pr22 6000� h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � t21

q� �
þ 2ph1r21 þ p r21 þ r22

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � r22

q
þ 1

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � r22

q� �3

ð7:58Þ

Fig. 7.22 Schematic diagram
of the cylindrical pressure
vessel

7.2 Surrogate-Model-Based Robust Design Optimization 187



www.manaraa.com

TC ¼ p t2 þ r2ð Þ2�r22
h i

6000� h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � r21

q� �
þ 2ph1 t1 þ r1ð Þ2�r21

h i
þ p t1 þ r1ð Þ2 þ t2 þ r2ð Þ2
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ r2ð Þ2� t1 þ r1ð Þ2
q

þ 1
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ r2ð Þ2� t1 þ rð Þ2

q
 �3
� p r22 þ r21
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r22 � r21

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 � r21

q� �3

ð7:59Þ

The maximum von Mises stress of the pressure vessel cannot be obtained
analytically. Therefore, HK is used to fit the relationship between the stress
response and the design variables. In this analysis, ANSYS 18.0 was used as the
simulation tool for the stress response. An axially symmetrical three-dimensional
(3D) finite element model with hexahedral meshes was selected as the HF model,
which is depicted in Fig. 7.23.

Correspondingly, Fig. 7.24 illustrates the one-dimensional (1D) finite element
model used as the low-fidelity (LF) model.

Fig. 7.23 Three-dimensional (3D) HF model of the cylindrical pressure vessel

Fig. 7.24 One-dimensional (1D) LF model of the cylindrical pressure vessel
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In this engineering example, 60 sample points were simulated for the LF sur-
rogate model, and the total number of sample points used to develop the HF
surrogate model was limited to 15. Deterministic optimization was performed first
to illustrate that RO is, in fact, necessary. The deterministic optimization results are
summarized in Table 7.3. Table 7.3 shows that at the deterministic optimum, the
constraint on gd2 is active.

Since the constraint on gd2 is active, when the uncertain variable r2 varies, the gd2
constraint can be violated, as shown in Fig. 7.24. Figure 7.24 presents the results of
generating 10,000 Monte Carlo samples and calculating the corresponding values
of gd2. The arrows indicate the feasible direction of the gd2 constraint. It can be
concluded from Fig. 7.25 that the deterministic optimum is not robust and that RO
is therefore necessary.

Robust solutions considering only the design variable uncertainty and consid-
ering both the design variable and MF surrogate model uncertainties are summa-
rized in Table 7.4.

To validate the actual robustness and feasibility of the solutions, 50 Monte Carlo
samples of the random variables in the vicinity of each robust solution were
plugged into the 3D HF finite element model. As observed in Table 7.4, although
the solution obtained using the robust design approach considering only the design
variable uncertainty has a smaller objective value, the actual constraint value
(gr1 ¼ l rsð Þþ 3r rsð Þ ¼ 266:99 MPa) calculated from the confirmed points is
greater than 250 MPa, meaning that the robust constraint limit
(gr1 ¼ l rsð Þþ 3r rsð Þ� 250 MPa) is violated. This finding demonstrates that
ignoring the uncertainty of the MF surrogate model can result in an infeasible
solution. Although the robust optimum found using the MF-surrogate-assisted RO

Table 7.3 Deterministic optimization results for the engineering case

Design variables and
responses

h1 r1 t1 r2 t2 Fd
TC gd1 gd2

Values 308.95 40.08 19.01 181.74 13.00 0.0949 249.18 0.600

Fig. 7.25 Values of gd2 with
variations in r2
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approach has a larger objective value, the confirmed constraint value achieved using
the MF-surrogate-assisted RO approach safely satisfies the constraint limit. This
result demonstrates that the MF-surrogate-assisted RO approach may sacrifice the
overall objective value to ensure robust solution feasibility.

7.2.2 Surrogate-Model-Based Deterministic RO Approaches

7.2.2.1 Basic Concept of Deterministic RO

A general formulation for an optimization problem with interval uncertainties is
given in Eq. (7.60).

min f ðx; pÞ
s.t. gjðx; pÞ� 0 j ¼ 1; 2. . .J

xlb � x� xub
p0 � Dpl � p� p0 þDpu

ð7:60Þ

where f is the objective function; x ¼ ðx1; x2; . . .xNÞT is the design variable vector;
xlb and xub are the lower and upper bounds, respectively, on x; g ¼ ðg1; g2; . . .gJÞ
are the constraints; and p ¼ ðp1; p2; . . .pGÞT is the parameter vector, which is fixed
for a particular optimization run but can exhibit uncertainty. The uncertainties in the
parameters p are modelled as intervals, where p0 is the nominal value of p and the
upper and lower bounds of the uncertainty region of p are Dpl and Dpu,

Table 7.4 Comparison and verification of optima for the example engineering case

Design variables
and responses

Only considering
design variable
uncertainty

Considering both design variable and
multi-fidelity surrogate model uncertainties

h1 303.18 295.77

r1 50.00 44.00

t1 19.00 21.16

r2 205.00 190.30

t2 19.14 22.06

Fr
TC 0.1722 0.1845

l Vð Þ 0.770 0.658

r Vð Þ 0.019 0.013

gr2 ¼ l Vð Þ � 3r Vð Þ 0.713 0.620

l rsð Þ 248.47 205.77

r rsð Þ 6.17 4.78

gr1 ¼ l rsð Þþ 3r rsð Þ 266.99 220.10
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respectively. Let Dp�¼ ½Dp�1 ;Dp�2 ; . . .;Dp�G � and Dpþ¼ ½Dpþ
1 ;Dpþ

2 ; . . .;Dpþ
G � be

the lower and upper bounds, respectively, of the variable variations, and let the

corresponding normalization of Dp be defined as D�pi ¼
Dpi=Dp

�;Dpi � 0

Dpi=Dp
þ ;Dpi [ 0

(
.

Note that if a design variable is uncertain, then this uncertainty is also modelled as
an interval, as in the case of p.

The essential goal of RO for Eq. (7.60) is to find an optimum x with certain
properties. Some basic concepts are introduced as follows:

(1) Objective robustness: The objective function always varies within its accept-
able objective variation range (AOVR) due to perturbation of the uncertain
variables in the variable variation range (VVR). In a real-world engineering
problem, this AOVR is pre-specified by the decision-makers in accordance with
a certain objective robustness requirement.

(2) Feasibility robustness: The constraints are not violated due to perturbation of
the uncertain variables, even in the worst-case situation.

(3) Optimality: Given that the abovementioned robustness targets are achieved, the
optimum also yields the best objective value.

Referring to the reverse-model-based robust optimization (RMRO) approach
presented in Ref. (Gunawan and Azarm 2004), a nested RO approach corre-
sponding to Eq. (7.60) is formulated as follows:

min f ðx; p0Þ
s.t. gjðx; p0Þ� 0 j ¼ 1; 2. . .J

1� gf � 0

1� gg � 0

ð7:61Þ

where gf is the objective robustness index and gg is the feasibility robustness index.
For a given x0, gf can be obtained by solving the following optimization

problem (Gunawan and Azarm 2004):

gf ¼ min Rf ðD�pÞ=R0 ¼
XG
i¼1

Dp=DpTð Þ2
" #1

2

=ðGÞ1=2

s.t.
Df0½ �2

½f ðx0; p0 þDpÞ � f ðx0; p0Þ�2
� 1 ¼ 0

ð7:62Þ

where Dp denotes the design variables; DpT denotes the known bounds of the
uncertainty region of p; Df0 is the AOVR, which represents the acceptable change
in the objective function value; Rf denotes the diameter of the objective sensitivity
region; R0 denotes the diameter of the parameter uncertainty region in the
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worst-case scenario; and G represents the dimensions of the parameter uncertainty
region.

Once gf is obtained, the relative sizes of the objective sensitivity region and the
parameter uncertainty region in the worst-case scenario can be determined, as
shown in Fig. 7.26a. The constraint in this problem reflects the fact that a point on
the boundary of the sensitivity region must satisfy Df0½ �2¼ ½f ðx0; p0 þDpÞ�
f ðx0; p0Þ�2. When gf � 1, the objective sensitivity region associated with the design
alternative covers the parameter uncertainty region, indicating that the design
alternative is robust in terms of the objective.

Similarly, for a given x0, gg can be obtained by solving the following opti-
mization problem (Gunawan 2004):

gg ¼ minRgðD�pÞ=R0 ¼
XG
i¼1

Dp=DpTð Þ2
" #1

2

=ðGÞ1=2

s.t. max ½glðx0; p0 þDpÞ� ¼ 0

ð7:63Þ

where Rg denotes the diameter of the feasibility sensitivity region.
In Eq. (7.63), gg represents the relative size difference between the feasibility

sensitivity region and the parameter uncertainty region in the worst-case scenario,
as shown in Fig. 7.26b. When gg � 1, the feasible sensitivity region associated with
the design alternative covers the parameter uncertainty region, indicating that the
design alternative is robust in terms of feasibility.

Fig. 7.26 Depiction of the objective robustness index and the feasibility robustness index in two
dimensions: a objective robustness index gf , b feasibility robustness index gg
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7.2.2.2 A Kriging-Assisted Deterministic RO Approach

(1) The framework and computational effort of the kriging-assisted deterministic
RO approach

To improve the effectiveness of RMRO, surrogate models are built for both the
objective robustness index and the feasibility robustness index. As a result, the
outer–inner nested optimization framework is transformed into a traditional
single-level optimization framework:

min f ðx; p0Þ
s.t. gjðx; p0Þ� 0 j ¼ 1; 2. . .J

1� ĝf � 0

1� ĝg � 0

ð7:64Þ

where ĝf and ĝg are the robustness index and feasibility robustness index,
respectively, predicted by the kriging surrogate models.

Figure 7.27 depicts the data flow of this framework, hereafter called K-RMRO.
The contents of the dashed boxes represent the process of constructing the surrogate
models, where the data flow is indicated by the dotted lines with arrows. Note that
unlike traditional constraints, which divide the design space into two continuous,
well-defined feasible and infeasible regions, robustness constraints may generate
multiple disjoint feasible regions. Therefore, a GA is selected to solve the outer

Fig. 7.27 Framework of the K-RMRO approach
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problem. The robustness indexes are calculated by employing the subroutine
‘fmincon’ function in MATLAB. The details of the implementation of K-RMRO
are as follows.

Step 1: Generate a set of sample points xs using Latin hypercube sampling
(LHS). xs will be used as the sample set for generating the kriging
surrogate models for the objective robustness index g�f and the feasibility
robustness index g�g.

Step 2: Solve the two inner optimization problems in Eqs. (7.62) and (7.63) for
each sample point, thus obtaining the objective robustness index g�f and
the feasibility robustness index g�g corresponding to each sample point.

Step 3: Build kriging surrogate models for the objective robustness index g�f and
the feasibility robustness index g�g.

Step 4: Initialize the outer optimization problem and solve Eq. (7.63) using the
GA. During the optimization process, the values of g�f and g�g for each
individual are predicted using the constructed kriging surrogate models.
The procedure stops when a prescribed maximum number of iterations is
reached.

As mentioned before, the response values obtained from the kriging surrogate
models are subject to prediction uncertainties, which may cause K-RMRO to yield
false optima. Hence, an improved kriging-assisted RMRO (IK-RMRO) method is
presented to enable the consideration of the interpolation uncertainties of the
kriging surrogate models. Note that as long as the robustness status of an individual
does not change because of the adoption of the kriging surrogate model, the
robustness of that individual can be predicted using the kriging surrogate model
instead of being judged based on the inner RO problem. However, if the robustness
status of the individual does change, then the inner RO problem should be solved.
Therefore, an objective switching criterion is introduced in IK-RMRO to determine
whether the inner RO problem or the kriging surrogate model replacement should
be used to evaluate the robustness of individuals. The switching criterion is pre-
sented for the objective robustness; a similar criterion can be used for the feasibility
robustness.

In each generation, the objective robustness index of each individual as predicted
by the kriging model can be either gf ðxiÞ� 1 or gf ðxiÞ[ 1. When the effects of the
interpolation uncertainties of the kriging surrogate models are considered, there are
four possible scenarios for a given individual, as depicted in Fig. 7.28.

• Scenario 1: gf ðxiÞ� 1 & gf ðxiÞþ 2sðxiÞ� 1 (point A)
• Scenario 2: gf ðxiÞ� 1 & gf ðxiÞþ 2sðxiÞ� 1 (point B)
• Scenario 3: gf ðxiÞ[ 1 & gf ðxiÞ � 2sðxiÞ\1 (point C)
• Scenario 4: gf ðxiÞ[ 1 & gf ðxiÞ � 2sðxiÞ[ 1 (point D)

On the basis of these scenarios, the individuals in the current generation can be
divided into two types:
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Type 1: The objective robustness of these individuals can be predicted using the
kriging surrogate model.

Clearly, the prediction error of the kriging surrogate model does not change the
robustness status of individuals in Scenarios 1 and 4.

Type 2: The objective robustness of these individuals should be judged based on
the inner RO problem.

Clearly, the prediction error of the kriging surrogate model may change the
robustness status of individuals in Scenarios 2 and 3.

Figure 7.29 presents the flowchart of the proposed IK-RMRO method. The
detailed steps are as follows.

Fig. 7.28 Four different
scenarios for candidate
designs

Fig. 7.29 Framework of the IK-RMRO approach

7.2 Surrogate-Model-Based Robust Design Optimization 195



www.manaraa.com

Step 1: Generate a set of sample points xs using LHS.
Step 2: Solve the two inner optimization problems given in Eq. (7.62) and

Eq. (7.63) for each sample point, thus obtaining the objective robustness
index g�f and the feasibility robustness index g�g corresponding to each
sample point.

Step 3: Build kriging surrogate models for the objective robustness index g�f and
the feasibility robustness index g�g.

Step 4: Initialize the outer optimization problem. Set the iteration counter to
N ¼ 1 and generate an initial population x using the GA.

Step 5: Apply the kriging surrogate models to predict the robustness indexes and
the corresponding interpolation uncertainty intervals for the current
population.

Step 6: Classify the individuals in the current population. This step can be
divided into two parts: (1) On the basis of the proposed quantitative
criterion for the objective robustness index, divide the current population
into two sets xf ;T1 and xf ;T2. The objective robustness indexes of indi-
viduals in xf ;T1 will be predicted using the kriging surrogate model,
while for the individuals in xf ;T2, the objective robustness indexes will
be obtained by solving the inner RO problem. (2) On the basis of the
proposed quantitative criterion for the feasibility robustness index,
divide the current population into two sets xg;T1 and xg;T2. The feasibility
robustness indexes of individuals in xg;T1 will be predicted using the
kriging surrogate model, while for the individuals in xg;T2, the feasibility
robustness indexes will be obtained by solving the inner RO problem.

Step 7: Calculate the fitness value of each individual in the current population.
Step 8: Generate the next generation based on the genetic operators of selection,

crossover and mutation. Set N ¼ N þ 1.
Step 9: Repeat Steps 5–8. The procedure stops when the prescribed maximum

number of iterations Nmax is reached.

RMRO can become computationally intractable because the inner problem must
be solved for each xi passed from the outer problem. The superiority of the pro-
posed surrogate-model-assisted RMRO approach relative to the original RMRO
approach lies in its computational effort. Below, the required numbers of function
calls for RMRO, K-RMRO and IK-RMRO are analysed. Note that a function call
refers to the calculation of both the objective and constraint values for a single
design point.

Suppose that a GA with a population size P and a maximum number of iterations
G is applied to solve the outer problem and that MATLAB’s fmincon function is
used to solve the inner optimization problem. Then, the number of function calls for
the original RMRO approach is
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FC1 ¼ P	 GþP	 G	 ðQ1 þQ2Þ ð7:65Þ

where Q1 denotes the average number of function calls for the inner problem to
obtain the objective robustness index for each candidate and Q2 is the average
number of function calls for the inner problem to obtain the feasibility robustness
index for each candidate.

Let the number of sample points used to construct the kriging surrogate models
be S; then, the required number of function calls for the K-RMRO approach is

FC2 ¼ P	 Gþ S	 ðQ1 þQ2Þ ð7:66Þ

Let Po and Pg be the numbers of individuals in each generation whose objective
robustness and feasibility robustness, respectively, are to be judged based on the
inner RO problem. According to the analysis in Sect. 7.3.1, both Po and Pg must be
smaller than the total population size. The required number of function calls for the
IK-RMRO approach is

FC3 ¼ P	 Gþ S	 ðQ1 þQ2ÞþPo 	 G	 Q1 þPg 	 G	 Q2 ð7:67Þ

By comparing the numbers of function evaluations in Eqs. (7.65)–(7.67), it can
be found that the RMRO, K-RMRO and IK-RMRO methods are ranked as follows
in terms of computational burden: RMRO > IK-RMRO > K-RMRO. A nonlinear
numerical example and an engineering case are presented to demonstrate the
applicability and efficiency of the IK-RMRO approach. The settings for the GA in
the optimization problems are given in Table 7.5. LHS is adopted for sampling
points from the design space. The number of sample points S is set to 50T in all
examples to ensure that the sample points can well reflect the spatial characteristics
of the problem, where T is the total number of design variables. To assess the
prediction abilities of the constructed kriging surrogate models, two error metrics,
the root mean square error (RMSE) and maximum absolute error (MaxAE), are
used to measure their global and local accuracies, respectively.

The first example is a two-dimensional nonlinear numerical example adapted
from Zhou et al. (2012), and it is used to present a detailed comparison of the
RMRO, K-RMRO and IK-RMRO methods. The problem formulation is given as
follows:

Table 7.5 GA settings used in the examples

GA settings Nonlinear numerical example Pressure vessel design

Population size 40 40

Max. iterations 50 100

Crossover probability 0.95 0.95

Mutation probability 0.05 0.05
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min f ¼ x31 sinðx1 þ 4Þþ 10x21 þ 22x1 þ 5x1x2 þ 2x22 þ 3x2 þ 12

s:t: g1 ¼ x21 þ 3x1 � x1 sinðx1Þþ x2 � 2:75� 0

g2 ¼ � log2ð0:1x1 þ 0:41Þþ x2e
�x1 þ 3x2�4 þ x2 � 3� 0

� 4� x1 � 1; �1� x2 � 1:5

Dx1 ¼ Dx2 ¼ 0:4;Df0 ¼ 2:5

ð7:68Þ

In this example, the design variables x1 and x2 have uncertainties of �0:4 around
their nominal values. The AOVR is Df ¼ 2:5. The robust optima obtained via
RMRO, K-RMRO and IK-RMRO are listed in Table 7.6. For comparison, the
deterministic optimum is also presented. Then, the kriging surrogate models for the
objective and feasibility robustness indexes, respectively, have MaxAEs of 0.37
and 0.32 and RMSEs of 0.09 and 0.13. These metrics indicate that the prediction
performance of the kriging surrogate models is desirable.

From Table 7.6, it can be observed that the deterministic optimum has the
smallest objective value; however, the value of g2 is equal to 0, which means that
the deterministic optimum provides no room for variation relative to the corre-
sponding constraint. Note that although the robust optima obtained via RMRO,
K-RMRO and IK-RMRO have objective values larger than that of the deterministic
optimum, they provide some amount of ‘cushion’ for variation relative to the
constraint. Thus, these RO approaches may sacrifice the objective value to ensure
robustness in terms of the objective and feasibility.

The results listed in Table 7.6 were verified by using LHS to obtain 500 per-
turbations of x1 and x2 around their nominal values within the corresponding ranges
Dx1 and Dx2 and calculating the Dg1;Dg2 and Df values of the designs corre-
sponding to these perturbed values. To offer improved clarity without losing any
important information, Fig. 7.30b, d, f and h shows only the max½g1; g2� value for
each perturbation. In Fig. 7.30a, c, e, g, the solid lines represent the acceptable Df0
ranges (Df0 ¼ �2:5). In Fig. 7.30b, d, f, h, the solid lines represent the design
constraints (max½g1; g2� ¼ 0). In these graphs, an optimum is considered robust in
terms of the objective if all sample points lie within the solid lines, that is, Df �Df0,
and an optimum is considered robust in terms of feasibility if all sample points lie
below the red line, i.e. max½g1; g2� � 0.

Table 7.6 Results comparison for the nonlinear numerical example

Results Deterministic RMRO K-RMRO IK-RMRO

x1 −1.826 −1.411 −1.399 −1.447

x2 0.741 0.268 0.233 0.267

f −3.287 −1.551 −1.437 −1.567

g1 −5.919 −6.117 −6.136 −6.166

g2 0 −1.374 −1.423 −1.360

Function calls 2,000 55,598 4,486 18,558
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It can be seen from Fig. 7.30 that the deterministic optimum becomes infeasible
in some cases, while the robust optima of RMRO, K-RMRO and IK-RMRO are
always feasible. Considering the objective variations, the objective variations of the
deterministic optimum and the robust optima of RMRO and IK-RMRO always
remain within the acceptable bounds, while the K-RMRO optimum violates the
bounds at some points. In other words, the deterministic optimum does not meet the

(a) Objective variation for deterministic optimum (b) Constraints variation for deterministic optimum 
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f
Δ

1xΔ

1,
2

m
ax

[g
g

]

1xΔ

Fig. 7.30 Robustness verification for the nonlinear numerical example
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requirements in terms of the feasibility robustness, and the K-RMRO optimum does
not meet the requirements in terms of the objective robustness.

A graphical explanation of these results is presented in Fig. 7.31. In Fig. 7.31,
the lines marked with arrows are the constraint boundaries, with the arrows indi-
cating the feasible directions. The ellipses are the contours of the objective function
for different optima. The rectangles with dotted lines represent the VVRs. The
optima obtained with the different approaches are represented by solid points in
Fig. 7.31a–d. As illustrated in Fig. 7.31a, some variable variations cause the
deterministic optimum to fall into the infeasible region. In contrast, the VVRs of the
RMRO, K-RMRO and IK-RMRO optima lie fully within the feasible region,
indicating that these optima are completely robust to variable variations. From
Fig. 7.31c, it can be observed that a small part of the VVR of the K-RMRO

(g) Objective variation for IK-RMRO optimum (h) Constraints variation for IK-RMRO optimum 
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Fig. 7.30 (continued)
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Fig. 7.31 Graphical explanation of the results for the nonlinear numerical example
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optimum lies outside the contours of fK�BMRO � Df0 and fK�BMRO þDf0, while for
the other three optima, the VVRs fall completely inside the AOVRs.

Regarding the computational efficiency of each robust method, the number of
function calls for K-RMRO is approximately 10 times less than that for RMRO, and
the number of function calls for IK-RMRO is approximately 3.5 times less than that
for RMRO. Figure 7.32 shows the numbers of simulation calls for robustness
evaluations in each generation of the three different robust methods. As shown in
Fig. 7.32, K-RMRO does not require robustness evaluations during the RO process,
while even the RMRO run with the fewest simulation calls (i.e. 1,029 in generation
26) requires more simulation calls than the IK-RMRO run with the greatest number
of simulation calls (i.e. 457 in generation 42). The reason for this difference is that
all of the intermediate designs must be evaluated for robustness in RMRO, while
only a portion of them must be assessed for robustness in IK-RMRO. Figure 7.33

Fig. 7.32 Numbers of
simulation calls for robustness
evaluations in each generation

Fig. 7.33 Types of individuals in generation 2 for the IK-RMRO approach
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depicts the individual types in generation 2 for IK-RMRO. In Fig. 7.33, the open
circles represent individuals whose robustness can be predicted using the kriging
surrogate model, while the solid circles represent individuals whose robustness
must be judged by means of the inner RO problem. It can be seen from this figure
that only a small proportion of the individuals need to be assessed for robustness.
As a result, the total number of function calls in IK-RMRO is actually less than that
in RMRO.

Due to the stochastic nature of GA, the results obtained might differ from one
run to another. To account for this, an additional 29 runs were performed, and the
results are summarized in Table 7.7. As shown in Table 7.7, RMRO and
IK-RMRO were always able to obtain robust optima, while K-RMRO could
guarantee a robust optimum in only 21 of the 30 runs, indicating that it sometimes
yields non-robust optima. The deterministic approach did not result in a robust
optimum for any of the 30 runs for this example. Regarding the computational cost,
the deterministic approach requires the fewest function calls because this method
does not require calculating a design’s robustness. The levels of computational
effort of the kriging surrogate-model-assisted RMRO methods are significantly
reduced compared with that of RMRO: K-RMRO requires an average of 4,486
function calls, i.e. 10 times fewer than the 55,765 function calls required by RMRO,
and IK-RMRO requires 19,286 function calls, representing a savings of 65.4%
function calls compared with RMRO.

The engineering example considered here is a classic pressure vessel design
problem, adapted from Kannan and Kremer (1994). Although the problem size is
not large for this engineering case, this is a typical and appropriate case for illus-
trating the applicability and superiority of the IK-RMRO method. The cylindrical
vessel is capped at both ends by hemispherical heads, as shown in Fig. 7.34. The
objective is to minimize the total cost, including the costs of the material, forming
and welding (Coello 2000). Four design variables are considered: x1 (Ts, the shell
thickness), x2 (Th, the head thickness), x3 (R, the inner radius) and x4 (L, the length
of the cylindrical section of the vessel, not including the heads). Ts and Th are
integer multiples of 0:0625 inch ð0:15875 cmÞ, which are the available thicknesses
of rolled steel plates; R and L are continuous.

Here, the problem is slightly modified by considering the possibility of varia-
tions in two of the design variables. The modified RO problem is specified as
follows:

Table 7.7 Results from 30 runs for the nonlinear numerical example

Deterministic RMRO K-RMRO IK-RMRO

Robustness 0/30 30/30 21/30 30/30

Mean of function calls 2,000 55,765 4,486 19,286
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min
x

f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x23 þ 3:1661x21x4 þ 19:84x21x3

s:t: g1ðxÞ ¼ �x1 þ 0:0193x3 � 0

g2ðxÞ ¼ �x2 þ 0:0954x3 � 0

g3ðxÞ ¼ �px23x4�
4
3
px33 þ 1;296;000� 0

g4ðxÞ ¼ x4 � 240� 0

where 0\x1\1:5; 0\x2\1:5; 30\x3\50; 160\x4\200

Dx1 ¼ 0:01;Dx4 ¼ 0:05;Df0 ¼ 100

ð7:69Þ

The detailed results for this RO problem are listed in Table 7.8.
From Table 7.8, it can be observed that the deterministic optimum has the lowest

objective value, but the constraints on g1 and g2 are active, which indicate that the
pre-existing design provides no room for the variables to vary. The relative

Fig. 7.34 Centre and end sections of the pressure vessel

Table 7.8 Results comparison for the pressure vessel example

Results Deterministic RMRO K-RMRO IK-RMRO

x1ðTsÞ 0.838 0.857 0.831 0.845

x2ðThÞ 0.414 0.419 0.415 0.412

x3ðRÞ 43.399 43.453 42.722 43.008

x4ðLÞ 161.158 160.654 169.152 165.758

f 5994.895 6138.735 6035.272 6091.096

g1 0 −0.018 −0.007 −0.015

g2 0 −0.005 −0.007 −0.002

g3 −2.103 −648.742 −527.573 −463.936

g4 −78.842 −79.346 −70.848 −74.242

Function calls 4,000 50,790 7,675 14,139
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difference in the robust optimal objective values between the RMRO and
IK-RMRO solutions is only 0.8%, which can be regarded as negligible considering
the stochasticity of the GA. In this case, 1000 test points were randomly generated
to calculate the values of the MaxAE and RMSE for the constructed kriging sur-
rogate models. The kriging surrogate models for the objective and feasibility
robustness indexes, respectively, have MaxAEs of 0.39 and 0.36 and RMSEs of
0.12 and 0.14. These findings illustrate that the prediction capabilities of the kriging
surrogate models are desirable.

The optimal results in Table 7.8 were verified by using LHS to generate 500
perturbations of x1 and x4 around their nominal values within the corresponding
ranges of Dx1 and Dx4 and calculating the gi ði ¼ 1; 3; 4Þ and Df0 values of the
designs corresponding to these perturbed values (note that g2 is independent of x1
and x4). To offer improved clarity without losing any important information,
Fig. 7.35b, d, f, h shows only the max½g1; g3; g4� value for each perturbation. In
Fig. 7.35a, c, e, g, the solid lines represent the AOVR (Df0 ¼ �100). In Fig. 7.35b,
d, f, h, the solid lines represent the design constraints (max½g1; g3; g4� ¼ 0).

From Fig. 7.35, it can be concluded that all four solutions meet the requirements
in terms of the objective robustness. However, the deterministic optimum and the
K-RMRO optimum become infeasible in some cases, while the robust optima of
RMRO and IK-RMRO are always feasible. In other words, the deterministic and
K-RMRO optima do not meet the requirements in terms of the feasibility robust-
ness. It should be noted that although there is still space to absorb variations in the
objective function for the RMRO and IK-RMRO optima, the objective value cannot
be improved because the variances in the constraints have reached their limits.

To further illustrate what happens when x1 and x4 vary, the feasible sensitivity
region and worst-case sensitivity region were calculated for each optimum in
Table 7.8. The feasible sensitivity regions were obtained by constructing the
inequality functions giðx1 þDx1; x2; x3; x4 þDx4Þ� 0; ði ¼ 1; 3; 4Þ from Eq. (7.42)
and then substituting the optimum found with each method into these functions. It
can be observed from Table 7.8 that only g1 and g3 are active or sensitive to the
design variables, while g4 remains almost the same for each optimum. These
observations imply that only g1 and g3 make critical contributions to the feasible
sensitivity region and that g4 can be safely dropped from the analysis.

Figure 7.36 presents the robustness information for each optimum. As shown in
Fig. 7.36a, the worst-case sensitivity region for the deterministic optimum is very
small, approaching a radius of zero. This is because g1 and g3 are already almost
active at the deterministic optimum, and consequently, little ‘safety margin’ exists
for x1 and x4 variations (in the worst case). As shown in Fig. 7.36c, the feasible
sensitivity region for the K-RMRO optimum does not fully cover the VVR; this
finding is attributed to the fact that the interpolation uncertainties of the responses
obtained from the kriging surrogate models are ignored. In contrast, the feasible
sensitivity regions of the RMRO and IK-RMRO optima are sufficiently large to
tolerate more extensive variations in x1 and x4. It is also observed that their feasible
sensitivity regions completely enclose the VVRs.
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(a) Objective variation for deterministic 
optimum

(b) Constraints variation for deterministic 
optimum

(c) Objective variation for RMRO optimum (d) Constraints variation for RMRO 
optimum

optimum optimum
(e) Objective variation for K-RMRO (f) Constraints variation for K-RMRO 

Fig. 7.35 Robustness verification for the pressure vessel example
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(g) Objective variation for IK-RMRO 
optimum

(h) Constraints variation for IK-RMRO 
optimum

Fig. 7.35 (continued)

(a) SR and WCSR of deterministic optimum (b) SR and WCSR of RMRO optimum

(c) SR and WCSR of K-RMRO optimum (d) SR and WCSR of IK-RMRO optimum

Fig. 7.36 Robustness information on the results for the pressure vessel design example
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Table 7.9 summarizes the results from a total of 30 runs for this pressure vessel
design example. As seen in Table 7.9, both IK-RMRO and RMRO are able to
obtain robust optima, and the average number of function calls required by
IK-RMRO is 13,738, which is approximately 28% of the function calls required by
RMRO. Although K-RMRO can reduce the number of function calls by 44%
compared with IK-RMRO, it cannot always guarantee the robustness of the solu-
tion. In this analysis, K-RMRO could guarantee a robust optimum in only 8 of the
30 runs.

7.3 Surrogate-Model-Based Evolutionary Optimization

Evolutionary optimization algorithms require a large number of function evalua-
tions to converge to globally optimal or near-optimal solutions (Sun et al. 2013;
Cheng et al. 2015b). This requirement has somewhat limited their ability to solve
real-world engineering design problems relying on computationally expensive
simulation models, which we refer to as HF models. There are three common
strategies to improve the efficiency of such algorithms. The first strategy is referred
to as fitness inheritance, in which the number of fitness evaluations is reduced by
estimating the fitness values of offspring individuals based on their parents (Chen
et al. 2002; Bui et al. 2005). The parents are individuals from the previous gen-
eration from which the offspring individuals were generated. The second strategy is
referred to as fitness imitation. Unlike in fitness inheritance, the fitness values of
offspring individuals are estimated based on several selected representative indi-
viduals in the current generation (Kodiyalam et al. 1996; Jin 2005). The last
strategy is referred to as fitness approximation (using surrogate-model-based
methods), in which surrogate models, e.g. kriging (Li et al. 2009a; Li 2011; Liu and
Collette 2014), radial basis function (RBF) (Chen et al. 2012; Regis 2013b; Datta
and Regis 2016; Sun et al. 2017), neural network (NN) (Song et al. 2012), support
vector regression (SVR) (Andrés et al. 2012) or quadratic polynomial fitting
(QPF) (Goel et al. 2007) models, are constructed to replace the fitness evaluations
to reduce the number of fitness calculations. Since the fitness approximation
strategy can lead to the best performance and yields the most efficient methods
among the above three strategies, these approaches have attracted widespread
interest (Jin 2011; Zhu et al. 2014).

Table 7.9 Results from 30 runs for the pressure vessel example

Deterministic RMRO K-RMRO IK-RMRO

Robustness 0/30 30/30 8/30 30/30

Mean of function calls 4,000 51,146 7,675 13,738
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In the broadest sense, surrogate-model-based methods can be divided into two
distinct modes: offline mode and online mode (Wang et al. 2016). In the offline
mode, a pre-specified number of sample points are used to build a surrogate model,
which is subsequently used in place of the simulation model in the evolutionary
computations (Chung and Alonso 2004; Lian and Liou 2005; Mogilicharla et al.
2015). The main shortcoming of the offline mode is that it is difficult to reduce the
number of fitness evaluations while simultaneously obtaining a surrogate model of
the desired accuracy (Li 2011). By contrast, in the online mode, an initial surrogate
model is first generated and then adaptively updated following certain model
updating strategies throughout the optimization process (Li et al. 2009a; Hamdaoui
et al. 2015). Compared with the offline mode, the online mode, which can exploit
data from previous iterations, has been reported to be more efficient for evolu-
tionary algorithms (Li 2011; Shimoyama et al. 2013).

In engineering design optimization, there may be multiple conflicting design
objectives. Thus, the ability to rapidly understand the trade-offs between multiple
conflicting objectives is important (Liu and Collette 2014). A general formulation
for a multi-objective optimization problem is given below:

min
x

FðxÞ ¼ f1ðxÞ; f2ðxÞ; . . .; fiðxÞ; . . .; fMðxÞf g

s.t. gjðxÞ� 0; j ¼ 1; 2. . .J

xlb � x� xub

ð7:70Þ

where FðxÞ is the objective function vector, which contains at least two conflicting
objective functions; x ¼ ðx1; x2; . . .xNÞT is the design variable vector; xlb and xub
are the lower and upper bounds, respectively, on x; and g ¼ ðg1; g2; . . .gJÞ are the
constraints. Since trade-offs exist among the objective functions, the optimization
problem expressed in Eq. (7.70) generally has a set of Pareto optimal solutions, that
is, there is no optimum that is superior to all other designs in terms of all objectives
(Shan and Wang 2005). These solutions are called the Pareto set or Pareto frontier.
Since multi-objective evolutionary algorithms (MOEAs) are the main means of
solving such problems, considerable attention has been paid to the possibility of
adopting the fitness approximation strategy to reduce the cost of these algorithms.
In this chapter, several typical online surrogate-model-based multi-objective evo-
lutionary optimization methods are introduced in detail.

7.3.1 A Kriging-Model-Assisted Multi-objective Genetic
Algorithm (K-MOGA)

The core factor affecting the success of online surrogate-model-based evolutionary
algorithms is the model updating strategy. The most direct model updating strategy
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is to update the surrogate model by evaluating the individuals with the best fitness
values (Jin et al. 2002), the individuals with the largest uncertainty (Branke and
Schmidt 2005; Wang et al. 2017) or the individuals that offer a trade-off between
improving the surrogate model accuracy and searching for the best fitness values
(Jeong et al. 2006; Hu et al. 2008; Hamdaoui et al. 2015). The random selection of
individuals to be evaluated using the original fitness function in each generation has
also been studied as a strategy for updating the surrogate model (Jin et al. 2000).
Preliminary efforts have demonstrated that these updating strategies with a prede-
fined number of updates may cause oscillation because the accuracy of the surro-
gate model may fluctuate significantly during the optimization process (Ratle 1998).
To address this issue, Li (Li et al. 2007) proposed a kriging
surrogate-model-assisted multi-objective genetic algorithm (K-MOGA), in which
an objective criterion is introduced to select individuals for simulation based on
whether the dominance statuses of the individuals (according to the original
function) change due to the uncertainty of the surrogate model.

The conventional multi-objective genetic algorithm (MOGA) used here is based
on NSGA (Kalyanmoy 2001) combined with an elitism strategy. In each generation
of the conventional MOGA, the current population is composed of two parts,
namely, non-dominated points and dominated points, and the response values at the
points in the initial population are calculated using a simulation model. When a
kriging model is used in place of the simulation model, the response values pre-
dicted by the kriging model are subject to a prediction error. If the prediction error
indicates that the dominance statuses of the design points in the current generation
will not change because of the use of the kriging model, it is acceptable to use the
kriging model instead of the simulation model. If the dominance status does change,
then the design points that are predicted to contribute to this change are observed
(i.e. their objective function values are computed using the simulation model);
otherwise, the kriging model is used to obtain all response values.

A quantitative measure of dominance, the minimum of minimum distance
(MMD), is used as the basis of the criterion for determining whether the values
predicted by the kriging model should be accepted. The MMD is defined as the
minimum distance between all pairs of non-dominated and dominated points in the
objective space, and it is calculated as follows. First, the individuals in the current
population are divided into two sets: the non-dominated set and the dominated set.
Then, the MMD is projected into each dimension in the objective space to obtain
the MMDfm (m = 1, …, M), as shown in Fig. 7.37.

The prediction error at a design point x is defined as

ImðxÞ ¼ rmðxÞ;m ¼ 1; . . .;M ð7:71Þ

where rmðxÞ is the standard deviation of the predictions of the kriging model.
Figure 7.38 depicts the relation between the prediction interval and the MMD.

As shown in Fig. 7.38a, the dominance statuses of the individuals will not change
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when the relation between the MMD and the prediction interval satisfies the fol-
lowing condition:

ImðBÞþ ImðaÞ� 2MMDfm ð7:72Þ

Otherwise, the dominance statuses of individuals may change, as shown in
Fig. 7.38b.

The steps of K-MOGA are as follows:

Fig. 7.37 MMD and MMDfm in the objective space

Fig. 7.38 Relation between the prediction interval and the MMD

210 7 Surrogate-Model-Based Design and Optimization



www.manaraa.com

Step 1. Initialization. Start by generating an initial population. Simulation models
are called to calculate the responses for the individuals. The initial kriging
models are constructed based on the initial samples.

Step 2. Generate a new population by means of GA operations.
Step 3. Apply the current kriging models to predict the response values for the

current population. Obtain the non-dominated set and the dominated set.
For individuals that do not satisfy Eq. (7.72), the simulation model is used
to calculate their responses.

Step 4. Calculate the fitness value of each point.
Step 5. Identify the non-dominated points and update the kriging models. The

individuals whose response values have been calculated through simula-
tion are used to update the kriging models.

Step 6. Check the stopping criteria. If the stopping criteria are satisfied, the
algorithm terminates; otherwise, it continues.

Step 7. Generate the next population. Return to Step 2.

7.3.2 A Multi-objective Variable-Fidelity Optimization
Method for GAs

The intrinsic drawbacks of single-fidelity surrogate modelling, i.e. the
time-consuming nature of running HF simulation models and the risk that incor-
porating inexpensive LF models directly into the MOGA may result in an inac-
curate Pareto frontier, have not been solved in the method discussed above.
A promising way to achieve a trade-off between high accuracy and high efficiency
is to adopt the multi-fidelity modelling (MFM) approach (Zhou et al. 2015a).
Although MFM has already been applied in engineering design optimization (Gano
et al. 2006b; Huang et al. 2006a; Han et al. 2010), researchers have mainly utilized
MFM to model the responses of engineering systems. By contrast, Zhu et al. (2013)
have proposed a multi-objective variable-fidelity optimization method for GAs. In
Zhu’s method, the NSGA-II multi-objective GA optimizer proposed by Deb et al.
(Deb et al. 2002) is used to drive the optimization problem. The global–local
approximation approach is used in this method, in which the HF function is
approximated by a global LF engineering model and a correction factor (Haftka
1991).

In this method, a fixed updating strategy is applied in which the total number and
distribution of HF calls are set at the outset of the optimization process. The
following procedure is used to distribute these HF calls.

(1) Initially, only the LF model is run for a number of generations to allow a rough
Pareto front to evolve from the randomly selected individuals that form the first
generation.
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(2) After a given number of generations, called the offset, a number of individuals
chosen from the current best non-dominated front in the optimizer are sent for
HF analysis. These individuals are selected based on a simple inter-individual
distance metric in the objective function space. The number of chosen indi-
viduals is set equal to an integer multiple of the processing capacity of the
computer cluster that is available for solving the problem. This number is
referred to as the density of the update. This strategy ensures that 100% of the
available processing power is always used when updating the surrogate model.
A kriging model is formed based on these data.

(3) Subsequent objective function evaluations use either the LF solution scaled to
the kriging model or simply the LF solution, depending on the error of the
kriging model at the point at which the objective function is to be evaluated.

(4) After a fixed number of generations have passed (referred to as the spacing),
another set of individuals (where the number of individuals is again equal to the
density) is selected from the current best non-dominated front and sent for HF
analysis. These individuals are selected by computing the prediction errors of
the current kriging model at all points in the current best non-dominated front
and sending the individuals with the highest errors for HF analysis. A new
kriging model is then formed by combining the existing and new HF results.

7.3.3 An Online Multi-fidelity Surrogate-Model-Assisted
Multi-objective Genetic Algorithm (OLVFM-MOGA)

In Zhu’s method, the cost of the LF model is assumed to be zero. However, this
method may lead to a large computational burden when the computational cost of
the LF model cannot be ignored. Shu et al. (2018) proposed an online MF
surrogate-model-assisted MOGA considering the possible change in status between
dominated individuals and non-dominated individuals and the computational costs
of the HF and LF models. This method is called OLVFM-MOGA by the authors.

A commonly used MF surrogate model approach based on an additive scaling
function is used here, in which the MF surrogate model is obtained by using a
scaling function to tune the LF model in accordance with the response values of the
HF model. The MF surrogate model can be expressed as

f̂mf xð Þ ¼ f̂ l xð Þþ Ĉ xð Þ ð7:73Þ

where f̂mf xð Þ is the MF surrogate model, f̂ l xð Þ represents the LF surrogate model

and Ĉ xð Þ is the scaling function. Kriging models are used to construct the LF
surrogate model and the scaling function surrogate model. A kriging model can
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provide an estimate of the prediction error at an unobserved point. The standard
deviation of the predictions of the MF surrogate model can be expressed as

rmf ðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l
ðxÞþ r2CðxÞ

q
ð7:74Þ

where rlðxÞ and rCðxÞ are the standard deviations of the LF surrogate model and
the scaling function surrogate model, respectively, which can be obtained from the
corresponding kriging models. The prediction interval at design point x can be
defined as

IðxÞ ¼ crmf ðxÞ
f ðxÞ ¼ f̂mf ðxÞ � 0:5IðxÞ

	
ð7:75Þ

where c reflects the confidence level and IðxÞ is the prediction interval. In accor-
dance with the six-sigma criterion used in engineering design (Koch et al. 2004),
the value of c is set to 6 in this analysis, representing a confidence level of 99.87%
that the true response lies within the prediction interval.

A novel model updating strategy is adopted in this approach to consider the
interpolation uncertainty introduced by MFM. In OLVFM-MOGA, the MF model
will be updated after each generation by sending individuals for LF/HF analysis in
accordance with the model updating strategy. Here, the individual-based updating
strategy proposed by Li (2007) is extended to MFM scenarios to consider the
computational costs of models of different fidelities.

The MMD, which refers to the minimum distance among all distances between
all pairs of non-dominated and dominated points, was introduced in Sect. 7.1 to
determine the lower bound on the distance between any two design points such that
one of the points is in the non-dominated set while the other is not. The MMD is
projected into each dimension in the objective space to obtain the MMDfm (m = 1,
…, M), as shown in Fig. 7.37.

Figure 7.38 depicts the relation between the prediction interval and the MMD.
As shown in Fig. 7.38a, the dominance statuses of the individuals will not change
when the relation between the MMD and the prediction interval satisfies the fol-
lowing condition:

IpðBÞþ IpðaÞ� 2MMDf1 ð7:76Þ

Otherwise, the dominance statuses of individuals may change, as shown in
Fig. 7.38b. To avoid this situation, the prediction intervals for such individuals
should be reduced. According to Eqs. (7.74) and (7.75), the prediction intervals can
be reduced by sending the individuals for LF or HF evaluations. Considering that
the computational burden of the LF model is much less than that of the HF model,
the individuals whose dominance statuses may change will first be sent for LF
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evaluations. As shown in Fig. 7.39, IPHðBÞ and IPHðaÞ denote the prediction
intervals after the individuals are sent for LF evaluations. Note that IPHðBÞ and
IPHðaÞ depend only on the uncertainty of the surrogate model scaling function and
that they are smaller than the previous prediction intervals. Then, the relation
between the prediction interval and the MMD will be checked based on Eq. (7.76).
If it is found that the dominance statuses of the individuals will not change, then the
individuals will not be sent for HF evaluations; otherwise, the prediction intervals
will be further reduced by sending the individuals for HF evaluations.

The steps of selecting individuals for LF/HF evaluations are listed in Algorithm
7.7. To prevent a very small projection distance MMDf1 from causing an unnec-
essary computational burden, a very small threshold value e is set such that when
MMDf1 is smaller than e, the corresponding individuals will not be selected for
simulation analysis.

For optimization problems with constraints, the objectives are penalized using a
penalty function (Coello 2000) if the individuals are located in an infeasible part of
the search space. This will cause such individuals to be dominated and far away
from the non-dominated individuals in the output space. Hence, the dominance
statuses of these individuals will not change, and they will not be selected for LF or
HF simulations based on the proposed updating strategy. Through the iterative
process of MOGA, these individuals will be weeded out.

Fig. 7.39 Prediction
intervals for individuals after
LF evaluations
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The detailed steps are described as follows.
Begin

Step 1: Select the initial LF and HF sample points and obtain the corresponding
responses to construct the initial variable-fidelity surrogate model
(VFM) (the responses for each objective will be normalized).

Step 2: Initialize the population of NSGA-II.
Step 3: Initialize the generation counter at N ¼ 1 and evaluate the fitness values

of the individuals using the constructed VFM.
Step 4: Obtain the non-dominated set and the dominated set.
Step 5: Select new HF and LF sample points to update the VFM using

Algorithm 1.
Step 6: Generate the new population and update the generation counter to

N ¼ N þ 1.
Step 7: Evaluate the fitness values of all individuals using the updated VFM.
Step 8: Check whether the stopping criterion is satisfied. If yes, proceed to Step

9; otherwise, return to Step 4.
Step 9: Output the obtained optimum.

End

7.3.4 Examples and Results

In this section, six numerical examples (ZDT1, ZDT2, ZDT3, FON, POL and QV)
adapted from Li et al. (Li 2011) and Liu et al.(Liu and Collette 2014) and an
engineering case adapted from Park et al. (Park and Dang 2010) are used to
demonstrate the applicability and efficiency of the proposed OLVFM-MOGA
approach. In these numerical examples, the LF models are modified versions of the
original numerical functions, and the computational cost of an HF sample is
assumed to be four times that of an LF sample. For comparison, these examples are
also solved using four other methods: (1) a MOGA with the LF model, (2) a
MOGA with the HF model, (3) a surrogate model-assisted MOGA with the
individual-based updating strategy (K-MOGA) and (4) Zhu’s method (Zhu et al.
2013).

The maximum number of generations was set to 150 for the QV problem and
100 for other problems. The settings for the other parameters of the various methods
are summarized in Table 7.10. Optimal Latin hypercube design (OLHD) (McKay
et al. 2000) was adopted for generating the initial points. For the numerical
examples, we solved each problem 30 times with each method to account for the
influence of randomness. For the engineering case, the optimization problem was
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solved 15 times each with K-MOGA, Zhu’s method and OLVFM-MOGA but only
one time for the MOGA with the HF model because of the large time cost.

Quality metrics for the Pareto optima
Two metrics proposed in the literature (Wu and Azarm 2001; Cheng et al. 2015c),
i.e. the relative hyperarea difference (RHD) and the overall spread (OS), were
calculated to measure the convergence quality and diversity of the Pareto optima.
Figure 7.40 depicts the geometrical interpretations of these two metrics for a
two-dimensional case. Let the current robust Pareto set be P ¼ a; b; c; df g, and let
pgood and pbad denote the extreme good and bad points, respectively. The RHD, as
shown in Fig. 7.40a, is defined as the relative difference between the area bounded
by pgood and pbad and the area between pbad and the current Pareto set P.

RHD ¼ HAðpbad ; pgoodÞ � HAðpbad; a; b; c; dÞ
HAðpbad ; pgoodÞ

ð7:77Þ

The OS, as shown in Fig. 7.40b, is defined as the ratio between the area bounded
by the two extreme points of the current Pareto set P and the area bounded by pgood
and pbad .

OS ¼ HA½extremesðPÞ�
HAðpbad; pgoodÞ

ð7:78Þ

The RHD and OS represent the convergence quality and diversity, respectively,
of the obtained Pareto frontier. The smaller the value of the RHD is, the higher the
convergence of the Pareto frontier, while a larger value of the OS indicates greater
diversity of the Pareto frontier. The settings of Pgood and Pbad for the different
examples are listed in Table 7.11.

Table 7.10 Algorithm parameter settings for all examples

Parameter OLVFM-MOGA IUK-MOGA MOGA with LF
model

MOGA with HF
model

Population
size

40 40 40 40

Initial LF
samples

60 / / /

Initial HF
samples

20 40 / /

e 1e−3 / / /
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Numerical examples

Among the six numerical examples, one objective function was simply evaluated
using the original function because of its simplicity, while the other objective
functions were replaced by VFMs during the optimization process. As a demon-
stration, we use one numerical example to present a detailed comparison of the
different methods. The problem formulation for the first example (ZDT2) is given
as follows:

minimize f1ðxÞ ¼ x1
HF : f2ðxÞ ¼ gðxÞ 	 hðxÞ
LF : f2ðxÞ ¼ ð0:9 � gðxÞþ 1:1Þ 	 ð1:1 � hðxÞ � 0:1Þ

where gðxÞ ¼ 1þ 9
n� 1

Xn
i¼2

xi

hðxÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðxÞ=gðxÞ

p
n ¼ 3

0� xi � 1; i ¼ 1; . . .; n

ð7:79Þ

Fig. 7.40 Quality metrics: a RHD, b OS

Table 7.11 The settings of
the good and bad points for
the different examples

Example Pgood Pbad

ZDT1/ ZDT2/ FON ½�0:2;�0:2� ½1:2; 1:2�
ZDT3 ½�0:2;�1� ½1:2; 1:2�
POL ½�2;�2� ½18; 28�
QV ½0:5; 0:5� ½2:3; 2:3�
Engineering case ½350; 0:25� ½750; 2:4�
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Figure 7.41 presents a typical Pareto frontier obtained from one of the 15 runs
for each of the different methods. As shown in Fig. 7.41, the Pareto frontiers
obtained from the three surrogate-model-based approaches are in good agreement
with the results of the MOGA with the HF model, while only a small proportion of
the Pareto frontiers obtained using the MOGA with the LF model and the MOGA
with HF model overlap. These findings indicate that it is difficult to obtain accurate
Pareto frontiers by simply incorporating LF models directly into a MOGA.

The results for the computational efficiency of the different methods are com-
pared in Table 7.12. In this table, the value denoted by FC represents the number of
HF function calls. Note that FC is calculated by converting LF function calls into
HF function calls under the assumption that the total time needed to obtain an HF
sample is four times that needed to obtain an LF sample in OLVFM-MOGA.

Regarding the computational efficiency, the FC of OLVFM-MOGA is nearly 35
times lower than that of the MOGA with the HF model and 12 times lower than that
of Zhu’s method. Meanwhile, the average FC of OLVFM-MOGA is reduced by
25% compared to that of IUK-MOGA. The reason is that in the MOGA with the HF
model, all of the individuals must be evaluated using the HF model to obtain their
fitness values, while only a small portion of them must be analysed using the HF
model in OLVFM-MOGA. Notably, although IUK-MOGA does not require all
individuals to be analysed using the HF model during the evolution process, it still
incurs a larger FC than OLVFM-MOGA does. This is because OLVFM-MOGA
can make full use of the information from the LF model and reduce the surrogate
model uncertainty simply by adding relatively cheap LF samples. Table 7.12 shows
that Zhu’s method is time-consuming when the computational cost of the LF model
cannot be ignored.

Figure 7.42 depicts the numbers of newly added sample points in the first 20
generations for the MOGA with the HF model, IUK-MOGA and Zhu’s method. It
can be seen that the MOGA with the HF model and Zhu’s method require many HF

Fig. 7.41 The Pareto
frontiers obtained for ZDT2
using different methods
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or LF evaluations in each generation, resulting in a cost that is unacceptable for
engineering optimization problems. Figure 7.43 depicts the numbers of newly
added HF/LF sample points in the first 20 generations for OLVFM-MOGA. As
illustrated in Figs. 7.42 and 7.43, OLVFM-MOGA can reduce the surrogate model
uncertainty by adding LF sample points, while IUK-MOGA evaluates only HF
sample points. As a result, the computational cost of OLVFM-MOGA is actually
less than that of IUK-MOGA.

The formulations of the remaining five numerical examples are described in
Table 7.13, along with the Pareto frontiers obtained using the different methods.
The results regarding the quality of the Pareto optima and the computational effort
are compared in Table 7.14. As illustrated in Table 7.13, the optima obtained with
IUK-MOGA, Zhu’s method and OLVFM-MOGA are in good agreement with that
obtained with the MOGA with the HF model. Another observation is that only a
small portion of the Pareto frontiers obtained from the MOGA with the LF model
and the MOGA with the HF model overlap. From Table 7.14, it can be concluded
that the proposed OLVFM-MOGA method can obtain Pareto optima that are
comparable to those obtained using the MOGA with the HF model. For all prob-
lems, the average computational cost of OLVFM-MOGA is much less than those of
the MOGA with the HF model and Zhu’s method. For problem POL, the com-
putational efficiency of OLVFM-MOGA is slightly worse than that of IUK-MOGA.
For all problems except POL, OLVFM-MOGA shows the best efficiency perfor-
mance. Since OLVFM-MOGA can reduce the prediction intervals by adding LF
sample points and the computational effort for solving the HF model is much larger
than that for solving the LF model, the computational effort of OLVFM-MOGA is
significantly less than that of the other methods in most cases.

Fig. 7.42 Numbers of newly added sample points in the first 20 generations for the methods
considered for comparison
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Engineering case: design optimization of a torque arm

In this analysis, a design optimization problem for a torque arm is studied. The
torque arm is subjected to a bending moment and a compressive force caused by
forces of P1 = 8.0 kN and P2 = 4.0 kN placed at the centre of the small end. The
boundary condition is that the position of the torque arm is fixed at the hole in the
large end. The Young’s modulus is 200 GPa, and the Poisson’s ratio is 0.3. The
goal of the multi-objective optimization problem is to minimize the volume and
displacement of the torque arm while keeping the stress below 190 MPa. There are
six design variables, namely, a, b1, D1, h, t1 and t2, as depicted in Fig. 7.44. The
other geometrical parameters remain fixed during the optimization process.
Table 7.15 shows the ranges of the design variables.

During the optimization process, the calculations of the displacement and stress
of the torque arm are replaced with VFM calculations. ANSYS 18.0 was selected as
the simulation tool in this case. A grid consisting of approximately 5 thousand
elements was selected as the LF model, and a grid consisting of approximately 50
thousand elements was chosen as the HF model, as shown in Fig. 7.45a, c. ANSYS
Parametric Design Language (APDL) was used to build the geometric models and
solve the finite element problems, and the simulation results are shown in
Fig. 7.45b, d. The total time needed to obtain an HF sample was approximately 4
times that needed to obtain an LF sample. It can be seen from Fig. 7.45 that the
simulation results of the LF and HF models vary widely under the same set of
parameters; this observation indicates that the LF model cannot be used directly to
obtain reliable optima.

Fig. 7.43 Numbers of newly
added sample points in the
first 20 generations for
OLVFM-MOGA
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Fig. 7.44 Geometry and parameterization of the torque arm

Table 7.15 Ranges of the
design variables

Design
variables

Lower bound
(mm)

Upper bound
(mm)

a 3.0 4.5

b1 25.0 35.0

D1 90.0 120.0

h 20.0 30.0

t1 12.0 22.0

t2 8.0 12.0

Elements=5,000

Elements=50,000

(a) LF simulation model

(c) HF simulation model

(b) Simulation result of LF simulation model

(d) Simulation result of HF simulation model

Fig. 7.45 Simulation results obtained with the LF and HF models
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Fifteen runs were performed with each method to account for the influence of
randomness in IUK-MOGA and OLVFM-MOGA. Figure 7.46 illustrates typical
Pareto frontiers obtained using these methods.

As shown in Fig. 7.46, the Pareto frontiers obtained with the two
surrogate-model-based approaches are in good agreement with that obtained using
the MOGA with the HF model. To further demonstrate the superiority of the
proposed approach, the convergence quality and diversity of the Pareto optima and
the levels of computational efforts required for the different methods were assessed,
and the results are summarized in Table 7.15.

As illustrated in Table 7.16, the average values of the RHD and OS for the other
three approaches are close to those for the MOGA with the HF model, indicating
that these three approaches can obtain Pareto optima with convergence and
diversity comparable to those of the Pareto optima obtained with the MOGA with
the HF model.

Fig. 7.46 Pareto frontiers
obtained using different
methods

Table 7.16 Comparison of the results of the different methods

MOGA
with HF
model

IUK-MOGA Zhu’s approach OLVFM-MOGA

15
runs

Mean STD 15
runs

Mean STD 15 runs Mean STD

RHD 0.37 [0.31
0.40]

0.35 0.04 [0.28
0.31]

0.29 0.005 [0.33
0.43]

0.36 0.03

OS 0.22 [0.14
0.32]

0.23 0.07 [0.14
0.21]

0.17 0.015 [0.21
0.40]

0.25 0.06

FC 3840 [127
429]

174.73 91.37 [1386
1395]

1391 3.137 [100
216.25]

143.22 32.01
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Regarding the computational efficiency, the FC of OLVFM-MOGA is nearly 25
times lower than that of the MOGA with the HF model and 10 times lower than that
of Zhu’s method. Meanwhile, the average FC of OLVFM-MOGA is reduced by
25% compared to that of IUK-MOGA. Moreover, IUK-MOGA shows worse sta-
bility performance.
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Chapter 8
Conclusion

This book is focused on surrogate-model-based engineering design and optimiza-
tion. The intent of writing this book is to provide a systematic knowledge in the area
of surrogate modelling methods and surrogate-model-based optimization algorithms
for the design of engineering products that require computationally expensive
simulations. The hope is that it will promote the development and enrichment of
surrogate model approaches to accelerate the design process and reduce simulation
costs. The first seven chapters give an overall introduction to the concept of surro-
gate models, different types of surrogate models, some surrogate-model-related
issues and the applications of surrogate models in design and optimization. The
contents of each chapter can be summarized as follows.

Chapter 1 started from the perspective of the practice of mechanical product
design and showed readers why surrogate models are needed for the design of
mechanical systems. Then, the definition of a surrogate model and several basic
related concepts were introduced, along with the nomenclature used in this book.

Chapter 2 reviewed five classic types of surrogate models, from traditional
polynomial response surface models to neural networks, which are widely used in
machine learning. Gaussian process models are also a representative type of sur-
rogate models, due not only to their inherent characteristics in terms of function
fitting, such as freedom from noise and the ability to provide prediction errors at
unsampled points but also to their extensive usage in multi-fidelity surrogate
modelling. The training process for a neural network was illustrated step by step,
together with the derivation of the backpropagation algorithm for model tuning.

In Chap. 3, ensembles of surrogate models, which integrate the merits of various
individual surrogate models, were studied as a special class of surrogate models.
Unlike the classic surrogate models discussed in Chap. 2, there is no strict math-
ematical derivation for ensembles of surrogate models, and their predictions simply
rely on the performance of each individual surrogate model. The key problem in the
construction of ensembles of surrogate models is determining how to identify
surrogate models with higher accuracy and assign higher weights to them. The
weight of each individual surrogate model can be calculated based on either their
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global performance or their local prediction accuracy at each sample point; these
two approaches result in constant or pointwise weight coefficients, respectively, for
each surrogate model throughout the design domain.

Chapter 4 presented a class of surrogate models that has been newly developed
in recent years—multi-fidelity surrogate models. Unlike traditional surrogate
models and ensembles of surrogate models, a multi-fidelity surrogate model con-
siders multiple data sources of different fidelities. A multi-fidelity surrogate model
fuses information from data of different fidelities by utilizing low-fidelity data to
capture the general trend of the responses of the high-fidelity model while applying
relatively few high-fidelity data to ensure the modelling accuracy. Multi-fidelity
surrogate models take advantage of both the low simulation cost of low-fidelity
models and the high accuracy of high-fidelity models; thus, they can achieve higher
accuracy at a lower simulation cost. Three commonly used types of multi-fidelity
surrogate models were studied, including scaling-function-based approaches, space
mapping approaches and co-kriging approaches. A comparison of these three dif-
ferent forms of scaling functions was conducted based on numerical examples with
different features, and the results showed that no form is universally better than the
others. According to the ‘no free lunch’ theorem (Ho and Pepyne 2002), no sur-
rogate model should be superior to all others for every application; thus, the
selection of surrogate models should be conducted in a problem-dependent manner.

Once a surrogate model has been obtained, its prediction accuracy should be
verified to give the designer some confidence that this surrogate model is well
representative of the simulation model it replaces. Chapter 5 first presented the
general model verification framework and classified the existing error metrics into
those that rely on testing methods and those that rely on sampling methods, based
on whether additional test points are needed in the model verification process. Then,
several classic metrics in each category were introduced, and a review of the use of
various error metrics for different application purposes was also provided. Finally,
the performances of the error metrics for four classic surrogate models were studied
to give readers an overall sense of which error metrics should be selected for
specific types of surrogate models. Various influencing factors were considered in
this comparison, including the number of samples, the noise level and the sampling
method. Readers who wish to know which error metric among a set of alternatives
is the best for a specific type of surrogate model can follow similar procedures to
select the most appropriate metric for further design and optimization.

Another important issue related to surrogate models is the sampling method use.
Chapter 6 presented several commonly used one-shot sampling methods and
adaptive sampling methods. Given the same sample distribution, the sampling
method has an important influence on the accuracy of the constructed surrogate
model, especially when the samples are sparse. Adaptive sampling methods select
sequential sample points based on input space information and/or output space error
information; thus, the samples can be allocated more reasonably, and the surrogate
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model can be effectively made to reflect more properties of the system at the same
simulation cost. Moreover, an adaptive sampling criterion can be based on either
exploration or exploitation of the design space or can strike a balance between
them, depending on whether the purpose is optimization or modelling. It should be
noted that sequential sampling methods for multi-fidelity modelling have rarely
been studied by other researchers, and compared with those for single-fidelity
surrogate models, the criteria for selecting sequential samples for multi-fidelity
models are more complicated. The code levels and corresponding locations of the
samples must be decided during the sampling process; thus, in addition to the input/
output information of the model at each level of fidelity, the cost ratio and numbers
of sequential samples for models of different fidelity also need to be considered.

Chapter 7 demonstrated several classic application modes of surrogate-model-
based design and optimization. For deterministic optimization, three efficient global
optimization (EGO) algorithms were studied, for both unconstrained and con-
strained optimization problems, and the procedures of these surrogate-based opti-
mization (SBO) algorithms were illustrated in detail. In the context of robust
optimization, the combined effect of the surrogate model prediction uncertainty and
the design variable uncertainty was derived, and the merits of surrogate-model-
based optimization were illustrated by means of a practical design problem for a
long cylindrical pressure vessel. Multi-objective evolution algorithms are another
important application of surrogate models since the fitness evaluations generally
require thousands of simulations and utilizing surrogate models in the optimization
process can greatly reduce the simulation cost; sometimes, the cost reduction ratio
may exceed 95%. Several novel surrogate-based multi-objective algorithms were
introduced, and six numerical examples were presented to demonstrate their
performance.

In summary, when applying surrogate-based design and optimization for the
design of real mechanical systems, designers can generally apply the following
procedures to build appropriate surrogate models and conduct the optimization
process: the characteristics of the problem should be analysed first. Based on the
dimensionality of the problem, the nonlinearity of the responses and other features,
the most suitable optimization algorithm and type of surrogate model can be
chosen. If the design budget is very limited, the adaptive sampling method can be
used, and the space-filling criterion should be selected based on the optimization
problem. Once the surrogate model has been obtained, its accuracy should be
verified. For this purpose, the available error metrics should be compared, and the
prediction uncertainty of the surrogate model should then be estimated using the
most appropriate error metrics. Finally, the surrogate model can be integrated into
the optimization framework, and the optimization algorithm can be run. At this
point, a reasonably reliable optimal solution should be obtained, and the designers
can compare the designed model against the available experimental results for
further validation.
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